Bechard, G. (1994). Use Of Cellulosic Substrates For The Microbial Treatment Of Acid-Mine Drainage. Journal of Environmental Quality, 23(1), 111–116.
Abstract: A mixed aerobic-anaerobic microbial treatment process was developed previously for acid mine drainage (AMD) using straw as a substrate. The process was effective only if AMD was supplemented with sucrose. The present study was conducted to determine which, if any, of three cellulosic materials could sustain the microbial treatment of AMD without the addition of a sucrose amendment and to determine the effect of the retention time on the performance of the reactors. The performance of small reactors that treated simulated AMD in the continuous mode was evaluated using alfalfa (Medicago sativa L.) hay, timothy (Phleum pratense L.) hay, and straw with a 5 d retention time. Parameters measured were pH, Fe, Al, sulfate, and ammonium. Timothy hay and straw sustained AMD mitigation for 3 wk, and thereafter all activity ceased. After the reactors ceased treating AMD, the mitigative activities were reinitiated by the addition of sucrose, but not by urea. Alfalfa sustained AMD mitigation for a longer time period than either straw or timothy. The effect of three retention times, 3.5, 7, and 35 d, was then investigated for reactors containing fresh alfalfa. Increasing the retention time resulted in better metal removal and a greater pH increase. With a 7-d retention time, 75 L of simulated AMD were neutralized from a pH of 3.5 to a pH value greater than 6.5. Reactors operating with a 3.5-d retention time treated only 58.3 L of simulated AMD before failing. Ammonium was detected in effluents of active reactors. The results of this study indicate that a low maintenance microbial treatment system can be developed with alfalfa as a substrate without the addition of a sucrose amendment.
|
Becker, G., Wade, S., Riggins, J. D., Cullen, T. B., Venn, C., & Hallen, C. P. (2005). Effect of Bast Mine treatment discharge on Big Mine Run AMD and Mahanoy Creek in the Western Middle Anthracite Field of Pennsylvania.
Abstract: The Bast Mine (reopened in 2001) and Big Mine are two anthracite coal mines near Ashland, PA, that were abandoned in the 1930's and that are now causing drastic and opposite effects on the water quality of the streams originating from them. To quantify these effects, multiple samples were taken at 5 different sites: 3 along Big Mine Run and 2 from Mahanoy Creek (1 upstream and 1 downstream of the confluence with Big Mine Run). At each site, one set of the samples was treated with nitric acid for metals survey, one set was acidified with sulfuric acid for nitrate preservation, one set was filtered for sulfate and phosphate tests, and one set was unaltered. Measurements of pH, TDS, dissolved oxygen, and temperature were made in the field. Alkalinity, acidity, hardness, nitrates, orthophosphates and sulfates were analyzed using Hach procedures. Selected metals (Fe, Ni, Mg, Ca, Cu, Zn, Hg, Pb) were analyzed utilizing flame atomic absorption spectroscopy. Drainage from the Bast Mine is actively treated with hydrated lime before the water is piped down to Big Mine Run. pH and alkalinity values were much higher at the outflow compared to those in the water with which it merged. The two waters could be visibly distinguished some distance downstream. pH values decreased, sulfate and dissolved iron increased and alkalinity was reduced to zero until the confluence with Mahanoy Creek. The high alkalinity, turbidity, TDS and calcium values in Mahanoy Creek were somewhat reduced downstream of the confluence with the much lower discharge Big Mine Run.
|
Bell, A. V. (1975). Some Recent Experiences In Treatment Of Acidic, Metal-Bearing Mine Drainages. CIM Bull., 68(764), 39–46.
|
Bell, A. V., & Nancarrow, D. R. (1974). Salmon and mining in northeastern New Brunswick (a summary of the northeastern New Brunswick mine water quality program). CIM Bull., 67(751), 44–53.
Abstract: It was aimed toward developing solutions to major water quality problems in the base metal mining regions of northeastern New Brunswick and specifically toward insuring that the extremely valuable fishery resources and aquatic environments of the region could be maintained in the face of existing and future base metal mining developments. The program analyzed in detail the fishery resources of the region, their water quality requirements, the mineral resources of the region and the many aspects of mining waste management at each phase of mine development. This paper describes the reasons for the initial concern and the approach adopted toward finding a solution. It briefly summarizes the important findings and recommendations made to support the conclusion that the fishery resource can be maintained and co-exist with current and future base metal mining developments in the region
|
Benkovics, I., Csicsák, J., Csövári, M., Lendvai, Z., & Molnár, J. (1997). Mine Water Treatment – Anion-exchange and Membrane Process. Proceedings, 6th International Mine Water Association Congress, Bled, Slovenia, 1, 149–157.
|