Henderson, A. (1998). The implementation of paste fill at the Henty Gold Mine. Minefill'98, 98(1), 299–304.
Abstract: The Henty Gold Mine, located ill Western Tasmania uses innovative solutions to effectively manage a mining operation in an environmentally sensitive setting and has been presented with several environmental awards. Fill is required as part of the mining method to provide passive ground support, minimise rock exposure and ensure maximum recovery of the small but high-grade orebody. The use of the whole portion of leach residue in the backfill reduces the surface tailing disposal requirements. Therefore, High Density Paste Fill (HDPF) has been selected as the most appropriate fill method to meet these objectives. Additional benefits include the minimisation of excess water from fill and the subsequent need for the collection and treatment of water and slimes. There are minimal equipment requirements during placement, thereby optimising mine resources for production.
|
Holtzhausen, L. (2005). Minewater treatment technology revved up. Water Sewage and Effluent, 25(2), 24–26.
|
Isaacson, A. E., & Jeffers, T. H. (1995). Acid mine drainage remediation through applied water treatment systems Pollution prevention for process engineering. In P. E. Richardson, B. J. Scheiner, & Jr. F. Lanzetta (Eds.),. New York: Engineering Foundation.
|
Jage, C. R., & Zipper, C. E. (2000). Acid-mine drainage treatment using successive alkalinity-producing systems. Powell River Project research and education program reports.
|
Janiak, H. (1992). Mine drainage treatment in Polish lignite mining. Mine Water Env., 11(1), 35–44.
Abstract: The paper presents volumes and characteristics of water discharged from some Polish lignite open pit mines and discusses methods for its treatment. Results of research work concerned with increase in mine drainage efficiency by using processes of radiation, flocculation and filtration through a set of bog plants, iknown as grass filter are also discussed
|