Home | [11–20] << 21 22 23 24 25 26 27 28 29 30 >> [31–40] |
Turek, M., & Gonet, M. (1997). Nanofiltration in the utilization of coal-mine brines. Desalination, 108(1-3), 171–177.
Abstract: The utilization of saline coal mine waters is considered to be the most adequate method of solving ecological problems caused by this kind of water in Poland. In the case of most concentrated waters, the so-called coalmine brines, the method of concentrating by evaporation in a twelve-stage expansion installation or vapour compression is applied, after which sodium chloride is manufactured. A considerable restriction in the utilization of coal mine brines is the high energy consumption in these methods of evaporation. An obstacle in the application of low energy evaporation processes, e.g. multi-stage flash, is the high concentration of calcium and sulfate ions in the coal mine brines. The present paper deals with the application of nanofiltration in the pretreatment of the brine. The application of nanofiltration membranes with an adequate pore size, including charged membranes, makes it possible to decrease the concentration of divalent ions in the permeate practically without any changes in the concentration of sodium chloride. Then the permeate may be concentrated in a multi-stage evaporation process, e.g. MSF, without any risk of the crystallization of gypsum. A combination of NF and MSF ought to set down the unit costs of the concentration of coal mine brines below those of mere evaporation.
|
Evangelou, V. P. (2001). Pyrite microencapsulation technologies: Principles and potential field application. Ecological Engineering, 17(2-3), 165–178.
Abstract: In nature, pyrite is initially oxidized by atmospheric O2, releasing acidity and Fe2+. At pH below 3.5, Fe2+ is rapidly oxidized by T. ferrooxidans to Fe3+, which oxidizes pyrite at a much faster rate than O2. Commonly, limestone is used to prevent pyrite oxidation. This approach, however, has a short span of effectiveness because after treatment the surfaces of pyrite particles remain exposed to atmospheric O2 and oxidation continuous abiotically. Currently, a proposed mechanism for explaining non-microbial pyrite oxidation in high pH environments is the involvement of OH- in an inner-sphere electron-OH exchange between pyrite/surface-exposed disulfide and pyrite/surface-Fe(III)(OH)n3-n complex and/or formation of a weak electrostatic pyrite/surface-CO3 complex which enhances the chemical oxidation of Fe2+. The above infer that limestone application to pyritic geologic material treats only the symptoms of pyrite oxidation through acid mine drainage neutralization but accelerates non-microbial pyrite oxidation. Therefore, only a pyrite/surface coating capable of inhibiting O2 diffusion is expected to control long-term oxidation and acid drainage production. The objective of this study was to examine the feasibility in controlling pyrite oxidation by creating, on pyrite surfaces, an impermeable phosphate or silica coating that would prevent either O2 or Fe3+ from further oxidizing pyrite. The mechanism underlying this coating approach involves leaching mine waste with a coating solution composed of H2O2 or hypochlorite, KH2PO4 or H4SiO4, and sodium acetate (NaAC) or limestone. During the leaching process, H2O2 or hypochlorite oxidizes pyrite and produces Fe3+ so that iron phosphate or iron silicate precipitates as a coating on pyrite surfaces. The purpose of NaAC or limestone is to eliminate the inhibitory effect of the protons (produced during pyrite oxidation) on the precipitation of iron phosphate or silicate and to generate iron-oxide pyrite coating, which is also expected to inhibit pyrite oxidation. The results showed that iron phosphate or silicate coating could be established on pyrite by leaching it with a solution composed of: (1) H2O2 0.018-0.16 M; (2) phosphate or silicate 10-3 to 10-2 M; (3) coating-solution pH [approximate]5-6; and (4) NaAC as low as 0.01 M. Leachates from column experiments also showed that silicate coatings produced the least amount of sulfate relative to the control, limestone and phosphate treatments. On the other hand, limestone maintained the leachate near neutral pH but produced more sulfate than the control.
|
Juby, G. J. G. (1996). Desalination of calcium sulphate scaling mine water: Design and operation of the SPARRO process. Water Sa, 22(2), 161–172.
Abstract: The South African mining industry discharges relatively small quantities of mine service water to the environment, but these effluents contribute substantially to the salt load of the receiving waters. The poor quality of service water also has significant cost implications on the mining operations. Of the two main types of mine service water encountered in the gold mining industry, the so-called calcium sulphate scaling types is found in the majority of cases. Preliminary testwork on this type of water using membrane desalination processes revealed that only the seeded reverse osmosis type of process showed promise. To overcome certain process problems and high operating costs with this system, a novel membrane desalination technique incorporating seeded technology, called the SPARRO (slurry precipitation and recycle reverse osmosis) process, was developed. The novel features of the new process included; a lower linear slurry velocity in the membrane tubes, a lower seed slurry concentration, a dual pumping arrangement to a tapered membrane stack, a smaller reactor and a modified seed crystal and brine blow-down system. Evaluation of the SPARRO process and its novel features, over a five-year period, confirmed its technical viability for desalinating calcium sulphate-scaling mine water. The electrical power consumption of the process was approximately half that of previous designs, significantly improving its efficiency. Membrane performance was evaluated and was generally unsatisfactory with both fouling and hydrolysis dominating at times, although operating conditions for the membranes were not always ideal. The precise cause(s) for the membrane degradation was not established, but a mechanism for fouling (based upon the presence of turbidity in the mine water) and a hypothesis fora possible cause of hydrolysis (alluding to the presence of radionuclides in the mine water) were proposed. Product water from the SPARRO process has an estimated gross unit cost (including capital costs) of 383 c/m(3) (1994).
Keywords: mine water treatment
|
Banks, S. B. (2003). The Coal Authority Minewater Treatment Programme: An update on the performance of operational schemes. Land Contam. Reclam., 11(2), 161–164.
Abstract: The performance of mine water treatment schemes, operated under the Coal Authority's national Minewater Treatment Programme, is summarised. Most schemes for which data are available perform successfully and remove over 90% iron. Mean area-adjusted iron removal rates for reedbed components of treatment schemes, range from 1.5 to 5.5 g Fe/m2, with percentage iron removal rates ranging from 68% to 99%. In the majority of cases, calculated area-adjusted removal rates are limited by influent iron loadings, and the empirical sizing criterion for aerobic wetlands, based on American removal rates of 10 g Fe/m2day, remains a valuable tool in the initial stages of treatment system design and estimation of land area requirements. Where a number of schemes have required modification after becoming operational, due consideration must always be given to the potential for dramatic increases in influent iron loadings, and to how the balance between performance efficiency and aesthetic appearance can best be achieved. Continual review and feedback on the performance of treatment systems, and the problems encountered during design implementation, will enhance the efficiency and effectiveness of the Minewater Treatment Programme within the UK.
|
Banks, D., Younger, P. L., Arnesen, R. - T., Iversen, E. R., & Banks, S. B. (1997). Mine-water chemistry: The good, the bad and the ugly. Environ. Geol., 32(3), 157–174.
Abstract: Contaminative mine drainage waters have become one of the major hydrogeological and geochemical problems arising from mankind's intrusion into the geosphere. Mine drainage waters in Scandinavia and the United Kingdom are of three main types: (1) saline formation waters; (2) acidic, heavy-metal-containing, sulphate waters derived from pyrite oxidation, and (3) alkaline, hydrogen-sulphide-containing, heavy-metal-poor waters resulting from buffering reactions and/or sulphate reduction. Mine waters are not merely to be perceived as problems, they can be regarded as industrial or drinking water sources and have been used for sewage treatment, tanning and industrial metals extraction. Mine-water problems may be addressed by isolating the contaminant source, by suppressing the reactions releasing contaminants, or by active or passive water treatment. Innovative treatment techniques such as galvanic suppression, application of bactericides, neutralising or reducing agents (pulverised fly ash-based grouts, cattle manure, whey, brewers' yeast) require further research.
|