Curi, A. C., Granda, W. J. V., Lima, H. M., & Sousa, W. T. (2006). Zeolites and their application in the decontamination of mine waste water. Informacion Tecnologica, 17(6), 111–118.
Abstract: This paper describes the genesis, structure and classification of natural zeolites, including their most relevant properties such as porosity, adsorption and ionic exchange. The use of natural zeolites in the treatment of effluents containing heavy metals is reviewed based on current literature. These uses are focused on mineral-metallurgical effluents and mercury pollution related to artisan mining activities. The study shows that natural zeolites are efficient in removal of heavy metals in metal mining effluents, can be produced and improved at a low cost, and can also be used to adsorb mercury vapors from ovens used to fire amalgams.
|
Zou, L. H. (2000). Sulfide precipitation flotation for treatment of acidic mine waste water. Transactions of Nonferrous Metals Society of China, 10, 106–109.
Abstract: Sulfide precipitation flotation of copper-iron-bearing acidic waste water from a large copper mine and the stimulated waste water were studied. The pH of the waste water was 2.2, with 130 mg/L Cu2+ and 500 mg/L Fe3+ (Fe2+). Results show that, when Na2S was added as precipitating agent, sodium butylxanthate as collector and at pH 2.0, the removal of copper could be as high as 99.7 % and the residual copper decreased to 0.2 mg/L, however, almost no iron was removed. When the floated solution was neutralized to pH = 8.0, more than 98 % iron was precipitated and the residual iron was less than 10 mg/L. In experiment on actual mine effluents, after the use of precipitate flotation technology to recover copper and pH neutralization to precipitate iron, the treated waste water does meet the emission standards for sewage and valuable floating copper graded 37.12%. The chemical calculation and mechanism of solution were also presented.
|
Brunet, J. - F. (2000). Drainages miniers acides; contraintes et remedes; etat des connaissances--Acid mine drainage; problems and remediation techniques; state of the art. Principaux Resultats Scientifiques – Bureau de Recherches Geologiques et Minieres, 1999/2000, 97–98.
|
Carland, R. M. (1995). Use of natural sedimentary zeolites for metal ion recovery from hydrometallurgical solutions and for the environmental remediation of acid mine drainage. Proceedings of the Xix International Mineral Processing Congress, Vol 4, , 95–100.
|
Wiessner, A. (1998). The treatment of a deposited lignite pyrolysis wastewater by adsorption using activated carbon and activated coke. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 139(1), 91–97.
Abstract: To study the functions of activated carbon and activated coke adsorption for the treatment of highly contaminated discolored industrial wastewater with a wide molecular size distribution of organic compounds, the deposited lignite pyrolysis wastewater from a filled open-cast coal mine was used for continuous and discontinuous experiments.
|