Younger, P. L., & Cornford, C. (2002). Mine water pollution from Kernow to Kwazulu-Natal; geochemical remedial options and their selection in practice.
Abstract: Pollution by mine drainage is a major problem in many parts of the world. The most frequent contaminants are Fe, Mn, Al and SO (sub 4) with locally important contributions by other metals/metalloids including (in order of decreasing frequency) Zn, Cu, As, Ni, Cd and Pb. Remedial options for such polluted drainage include monitored natural attenuation, physical intervention to minimise pollutant release, and active and passive water treatment technologies. Based on the assessment of the key hydrological and geochemical attributes of mine water discharges, a rational decision-making framework has now been developed for deciding which (or which combinations) of these options to implement in a specific case. Five case studies illustrate the application of this decision-making process in practice: Wheal Jane and South Crofty (Cornwall), Quaking Houses (Co Durham), Hlobane Colliery (South Africa) and Milluni Tin Mine (Bolivia). In many cases, particularly where the socio-environmental stakes are particularly high, the economic, political and ecological issues will prove even more challenging than the technical difficulties involved in implementing remedial interventions which will be robust in the long term. Hence truly “holistic” mine water remediation is a multi-dimensional business, involving teamwork by a range of geoscientific, hydroecological and socio-economic specialists.
|
Swoboda-Colberg, N., Colberg, P., & Smith, J. L. (1994). Constructed vertical flow aerated wetlands.
Abstract: In the report, wetland technology is described in which the main reactive layer is limestone gravel (rather than organic material) which is overlain by a fine gravel filter and soil. The three-year project included laboratory and field studies. Vertical aerated wetlands, simulated by columns, constructed in the field and in the laboratory, were operated during the project. The report presents a summary of results given in previous reports and summaries of results obtained using water from Butte, MT, and field studies at the Rockford Tunnel, near Idaho Springs, CO.
|
Skousen, J., Rose, A., Geidel, G., Foreman, J., Evans, R., & Hellier, W. (1998). A handbook of technologies for avoidance and remediation of acid mine drainage.
|
Schwartz, M. O., & Ploethner, D. (1999). From mine water to drinking water; heavy-metal removal by carbonate precipitation in the Grootfontein-Omatako Canal, Namibia.. Hanover: Bundesanst. fuer Geowiss. und Rohstoffe.
|
Rabenhorst, M. C., & James, B. R. (1993). Acid mine drainage remediation via sulfidization in wetlands Fiscal year 1992 annual report.
|