Meek, F. A., Jr., Skousen, J. G., & Ziemkiewicz, P. F. (1996). Evaluation of acid prevention techniques used in surface mining. In Acid mine drainage control and treatment. Morgantown: West Virginia University and the National Mine Land Reclamation Center.
|
Kingham, N. W., Semenak, R., Powell, G., & Way, S. (2002). Reverse osmosis coupled with chemical precipitation treatment of acid mine leachate at the Basin-Luttrell Pit, Ten Mile Creek Site, Lewis and Clark County, Montana Hardrock mining 2002; issues shaping the industry..
|
Jage, C. R., & Zipper, C. E. (2000). Acid-mine drainage treatment using successive alkalinity-producing systems. Powell River Project research and education program reports.
|
Isaacson, A. E., & Jeffers, T. H. (1995). Acid mine drainage remediation through applied water treatment systems Pollution prevention for process engineering. In P. E. Richardson, B. J. Scheiner, & Jr. F. Lanzetta (Eds.),. New York: Engineering Foundation.
|
Hause, D. R., & Willison, L. R. (1986). Deep Mine Abandonment Sealing and Underground Treatment to Prelude Acid Mine Drainage.
Abstract: Beth Energy's Mine 105W is located in Barbour County, West Virginia, near Buckhannon. The mine was opened by drifts updip into the Pittsburgh Seam in 1971 and operated until June, 1982. Most of the water which enters Mine 105W percolates down from previously mined areas in the Redstone Seam, Mine 101, which generally lies 38 feet above the Pittsburgh Seam. The quality of this water is good as it enters Mine 105W. While operating, the Mine 105W water was segregated by pumping. The bulk of the water was collected in sumps near the main area of infiltration from the Redstone Seam and was pumped to Gnatty Creek Portal where, because of the quality, it was minimally treated and discharged. The remainder of the water flowed to the original West Portal where it was occasionally treated with lime.
|