|
Riveros, P. A. (1995). Applications of ion exchangers to the treatment of acid mine drainage. Sudbury '95 – Mining and the Environment, Conference Proceedings, Vols 1-3, , 441–449.
|
|
|
Murdock, D. J. (1995). Treatment of acid mine drainage by the high density sludge process. Sudbury '95 – Mining and the Environment, Conference Proceedings, Vols 1-3, , 431–439.
|
|
|
Magdziorz, A., & Sewerynski, J. (2000). The use of membrane technique in mineralised water treatment for drinking and domestic purposes at “Pokoj” coal mine district under liquidation. In A. Rozkowski (Ed.), 7th international Mine Water Association congress; Mine water and the environment (pp. 430–442). Sosnowiec: Uniwersytet Slaski.
|
|
|
Macklin, M. G. (2006). A geomorphological approach to the management of rivers contaminated by metal mining. Geomorphology, 79(3-4), 423–447.
Abstract: As the result of current and historical metal mining, river channels and floodplains in many parts of the world have become contaminated by metal-rich waste in concentrations that may pose a hazard to human livelihoods and sustainable development. Environmental and human health impacts commonly arise because of the prolonged residence time of heavy metals in river sediments and alluvial soils and their bioaccumulatory nature in plants and animals. This paper considers how an understanding of the processes of sediment-associated metal dispersion in rivers, and the space and timescales over which they operate, can be used in a practical way to help river basin managers more effectively control and remediate catchments affected by current and historical metal mining. A geomorphological approach to the management of rivers contaminated by metals is outlined and four emerging research themes are highlighted and critically reviewed. These are: (1) response and recovery of river systems following the failures of major tailings dams; (2) effects of flooding on river contamination and the sustainable use of floodplains; (3) new developments in isotopic fingerprinting, remote sensing and numerical modelling for identifying the sources of contaminant metals and for mapping the spatial distribution of contaminants in river channels and floodplains; and (4) current approaches to the remediation of river basins affected by mining, appraised in light of the European Union's Water Framework Directive (2000/60/EC). Future opportunities for geomorphologically-based assessments of mining-affected catchments are also identified. (c) 2006 Elsevier B.V. All rights reserved.
|
|
|
Gobla, M. J. (2002). A rapid response to cleanup – Gilt Edge Superfund Site, South Dakota. Tailings and Mine Waste '02, , 421–425.
Abstract: The Gilt Edge gold mine is an acid drainage site that has been put on an accelerated closure schedule. The mine ceased activities in 1999 when Dakota Mining Corporation declared bankruptcy forcing the State of South Dakota to immediatly assume water treatment operations. Evaluation of conceptual closure plan options and cost estimates led the State of South Dakota to a decision to seek Federal assistance. The site has quickly moved into reclamation mode for the principal contamination source, the Ruby waste-rock dump. Designs and specifications for capping the Ruby waste-rock dump were prepared while Superfund listing was pursued. In October of 2000, mobilization of the first reclamation contractor began and by December the site was added to the National Priorities List. Capping the waste-rock dump will address a major acid drainage source. Water treatment requirements are expected to decline as conventional methods such as diverting clean water, backfilling, grading, capping, limestone neutralization, and revegetation are implemented. Acid seepage from underground workings, steep highwalls, and some pit backfills will remain. Major field trials of emerging technologies are nearing completion and some are showing promising results. Carbon reduction in a pit lake, and pyrite microencapsulation on simulated waste dumps, are showing initial success. Their application may minimize or eliminate the need for long-term active water treatment which has been a long sought goal for major acid rock drainage sites.
|
|