Murray-Gulde, C. L. (). Contributions of Schoenoplectus californicus in a constructed wetland system receiving copper contaminated wastewater. Water, Air, Soil Pollut., 163(1-4), 355–378.
Abstract: Functional roles of Schoenoplectus californicus, giant bulrush, were evaluated in an 3.2 ha (8-acre) constructed wetland treatment system receiving copper-contaminated water. The constructed wetland used in this research was designed to decrease bioavailable copper concentrations in a wastestream and eliminate associated toxicity to downstream biota by exploiting the thermodynamic processes responsible for copper speciation. This was achieved by integrating carbon, sulfur and copper biogeochemical cycles. In this system, S. californicus, which represents an integral part of the carbon cycle, provides a physical, chemical and biological role in removing metals from the aqueous phase. The specific contributions of S. californicus in this system are to provide a sustainable carbon source for removal of copper by (1) provision of an organic ligand for sorption of copper entering the system, (2) production of organic ligands through growth of S. californicus, (3) accretion of organic ligands over time due to decomposition of S. californicus detritus, and (4) use of organic carbon as an energy source for dissimilatory sulfate production. Shoots and roots of viable S. californicus sorbed 0.88% and 5.88%, respectively, of copper entering the system. The half-life of S. californicus detritus in the constructed wetland system was approximately 184 d, indicating that sufficient detritus will accrete over time, providing binding sites for copper and an energy source for bacterial metabolic processes that contribute to copper immobilization in wetland systems.
|
Kuyucak, N. (1995). Conventional and new methods for treating acid mine drainage. Cami'95 – Computer Applications in the Mineral Industry, , 863–872.
|
Ziemkiewicz, P., Skousen, J., & Simmons, J. (2001). Cost benefit analysis of passive treatment systems.
|
Gatzweiler, R. (2001). Cover design for radioactive and AMD-producing mine waste in the Ronneburg area, Eastern Thuringia. Waste Management, 21(2), 175–184.
Abstract: At the former uranium mining site of Ronneburg, large scale underground and open pit mining for nearly 40 years resulted in a production of about 113 000 tonnes of uranium and about 200 million cubic metres of mine waste. In their present state, these materials cause risks to human health and strong environmental impacts and therefore demand remedial action. The remediation options available are relocation of mine spoil into the open pit and on site remediation by landscaping/contouring, placement of a cover and revegetation. A suitable vegetated cover system combined with a surface water drainage system provides long-term stability against erosion and reduces acid generation thereby meeting the main remediation objectives which are long-term reduction of radiological exposure and contaminant emissions and recultivation. The design of the cover system includes the evaluation of geotechnical, radiological, hydrological, geochemical and ecological criteria and models. The optimized overall model for the cover system has to comply with general conditions as, e.g. economic efficiency, public acceptance and sustainability. Most critical elements for the long-term performance of the cover system designed for the Beerwalde dump are the barrier system and its long-term integrity and a largely self-sustainable vegetation. (C) 2001 Elsevier Science Ltd. All rights reserved.
|
Hause, D. R., & Willison, L. R. (1986). Deep Mine Abandonment Sealing and Underground Treatment to Prelude Acid Mine Drainage.
Abstract: Beth Energy's Mine 105W is located in Barbour County, West Virginia, near Buckhannon. The mine was opened by drifts updip into the Pittsburgh Seam in 1971 and operated until June, 1982. Most of the water which enters Mine 105W percolates down from previously mined areas in the Redstone Seam, Mine 101, which generally lies 38 feet above the Pittsburgh Seam. The quality of this water is good as it enters Mine 105W. While operating, the Mine 105W water was segregated by pumping. The bulk of the water was collected in sumps near the main area of infiltration from the Redstone Seam and was pumped to Gnatty Creek Portal where, because of the quality, it was minimally treated and discharged. The remainder of the water flowed to the original West Portal where it was occasionally treated with lime.
|