Aube, B. C., & Zinck, J. M. (1999). Comparison of AMD treatment processes and their impact on sludge characteristics.
Abstract: Lime neutralisation for the treatment of acid mine drainage is one of the oldest water pollution control techniques practised by the mineral industry. Several advances have been made in the process in the last thirty years, particularly with respect to discharge concentrations and sludge density. However, the impact of different treatment processes on metal leachability and sludge handling properties has not been investigated. A study of treatment sludges sampled from various water treatment plants has shown that substantial differences can be related to the treatment process and raw water composition. This study suggests that sludge densities, excess alkalinity, long-term compaction properties, metal leachability, crystallinity and cost efficiency can be affected by the neutralisation process and specific process parameters. The study also showed that the sludge density and dewatering ability is not positively correlated with particle size as previously suggested in numerous studies. The treatment process comparisons include sludge samples from basic lime treatment, the conventional High Density Sludge (HDS) Process, and the Geco HDS Process.
|
Aytas, S. O., Akyil, S., Aslani, M. A. A., & Aytekin, U. (1999). Removal of uranium from aqueous solutions by diatomite (Kieselguhr). Journal of Radioanalytical and Nuclear Chemistry, 240(3), 973–976.
|
Bagdy, I., & Kaocsány, L. (1982). Treatment of mine water for the protection of pumps. Proceedings, 1st International Mine Water Congress, Budapest, Hungary, ABCD Supplementary volume, 201–214.
|
Baker, K. A., Fennessy, M. S., & Mitsch, W. J. (1991). Designing wetlands for controlling coal mine drainage: an ecologic- economic modelling approach. Ecological Economics, 3(1), 1–24.
Abstract: A simulation model is developed of the efficiency and economics of an application of ecotechnology – using a created wetland to receive and treat coal mine drainage. The model examines the role of loading rates of iron on treatment efficiencies and the economic costs of wetland versus conventional treatment of mine drainage. It is calibrated with data from an Ohio wetland site and verified from multi-site data from Tennessee and Alabama. The model predicts that iron removal is closely tied to loading rates and that the cost of wetland treatment is less than that of conventional for iron loading rates of approximately 20-25 g Fe m “SUP -2” day “SUP -1” and removal efficiencies less than 85%. A wetland to achieve these conditions would cost approximately US$50 000 per year according to the model. When higher loading rates exist and higher efficiencies are needed, wetland systems are more costly than conventional treatment. -Authors
|
Ball, B. R. (1996). Advanced oxidation treatment of mine drainage. Second International Symposium on Extraction and Processing for the Treatment and Minimization of Wastes – 1996, , 363–376.
Abstract: An investigation of the effects of ozone and ozone-induced hydroxyl radical on reducing whole affluent toxicity is described and discussed relative to the application of ozone for industrial water treatment. Results from operation of an ozone system treating industrial affluent from a lead and zinc mine in Colorado are presented. The mine discharges 1,000 gpm of wastewater into a tributary of the Arkansas River and has historically exceeded Whole Effluent Toxicity (WET) limits and on occasion has exceeded numeric limits for copper, ammonia, and cyanide. Based on results of a Toxicity Identification Evaluation (TIE) conducted on the effluent and individual process waste streams, the source of effluent toxicity is believed to be primarily associated with organic reagents used in the milling process.
|