Home | << 1 2 3 4 5 >> |
Turek, M., & Gonet, M. (1997). Nanofiltration in the utilization of coal-mine brines. Desalination, 108(1-3), 171–177.
Abstract: The utilization of saline coal mine waters is considered to be the most adequate method of solving ecological problems caused by this kind of water in Poland. In the case of most concentrated waters, the so-called coalmine brines, the method of concentrating by evaporation in a twelve-stage expansion installation or vapour compression is applied, after which sodium chloride is manufactured. A considerable restriction in the utilization of coal mine brines is the high energy consumption in these methods of evaporation. An obstacle in the application of low energy evaporation processes, e.g. multi-stage flash, is the high concentration of calcium and sulfate ions in the coal mine brines. The present paper deals with the application of nanofiltration in the pretreatment of the brine. The application of nanofiltration membranes with an adequate pore size, including charged membranes, makes it possible to decrease the concentration of divalent ions in the permeate practically without any changes in the concentration of sodium chloride. Then the permeate may be concentrated in a multi-stage evaporation process, e.g. MSF, without any risk of the crystallization of gypsum. A combination of NF and MSF ought to set down the unit costs of the concentration of coal mine brines below those of mere evaporation.
|
Bertrand, S. (1997). Performance of a nanofiltration plant on hard and highly sulphated water during two years of operation. Desalination, 113(2-3), 277–281.
Abstract: A highly sulphated, hard water from a flooded iron mine was treated by nanofiltration for the production of drinking water (125 m(3)/h). This paper introduces the context and summarizes the configuration and operating conditions of the plant. The process performance in terms of product water quality and permeability during the first 2 years is presented and discussed.
Keywords: mine water treatment
|
Banks, D., Younger, P. L., Arnesen, R. - T., Iversen, E. R., & Banks, S. B. (1997). Mine-water chemistry: The good, the bad and the ugly. Environ. Geol., 32(3), 157–174.
Abstract: Contaminative mine drainage waters have become one of the major hydrogeological and geochemical problems arising from mankind's intrusion into the geosphere. Mine drainage waters in Scandinavia and the United Kingdom are of three main types: (1) saline formation waters; (2) acidic, heavy-metal-containing, sulphate waters derived from pyrite oxidation, and (3) alkaline, hydrogen-sulphide-containing, heavy-metal-poor waters resulting from buffering reactions and/or sulphate reduction. Mine waters are not merely to be perceived as problems, they can be regarded as industrial or drinking water sources and have been used for sewage treatment, tanning and industrial metals extraction. Mine-water problems may be addressed by isolating the contaminant source, by suppressing the reactions releasing contaminants, or by active or passive water treatment. Innovative treatment techniques such as galvanic suppression, application of bactericides, neutralising or reducing agents (pulverised fly ash-based grouts, cattle manure, whey, brewers' yeast) require further research.
|
Skousen, J. (1997). Overview of passive systems for treating acid mine drainage. Green Lands, 27(4), 34–43. |
Benner, S. G., Blowes, D. W., & Ptacek, C. J. (1997). A full-scale porous reactive wall for prevention of acid mine drainage. Ground Water Monitoring and Remediation, 17(4), 99–107.
Abstract: The generation and release of acidic drainage containing high concentrations of dissolved metals from decommissioned mine wastes is an environmental problem of international scale. A potential solution to many acid drainage problem is the installation of permeable reactive walls into aquifers affected by drainage water derived from mine waste materials. A permeable reactive wall installed into an aquifer impacted by low-quality mine drainage waters was installed in August 1995 at the Nickel Rim mine site near Sudbury, Ontario. The reactive mixture, containing organic matter, was designed to promote bacterially mediated sulfate reduction and subsequent metal sulfide precipitation. The reactive wall is installed to an average depth of 12 feet (3.6 m) and is 49 feet (15 m) long perpendicular to ground water flow. The wall thickness (flow path length) is 13 feet (4 m). Initial results, collected nine months after installation, indicate that sulfate reduction and metal sulfide precipitation is occurring. Comparing water entering the wall to treated water existing the wall, sulfate concentrations decrease from 2400 to 4600 mg/L to 200 to 3600 mg/L; Fe concentration decrease from 250 to 1300 mg/L to 1.0 to 40 mg/L, pH increases from 5.8 to 7.0; and alkalinity (as CaCO<inf>3</inf>) increases from 0 to 50 mg/L to 600 to 2000 mg/L. The reactive wall has effectively removed the capacity of the ground water to generate acidity on discharge to the surface. Calculations based on comparison to previously run laboratory column experiments indicate that the reactive wall has potential to remain effective for at least 15 years.
|