Adam, K. (2003). Solid wastes management in sulphide mines: From waste characterisation to safe closure of disposal sites. Minerals and Energy Raw Materials Report, 18(4), 25–35.
Abstract: Environmentally compatible Waste Management schemes employed by the European extractive industry for the development of new projects, and applied in operating sulphide mines, are presented in this study. Standard methodologies used to assess the geotechnical and geochemical properties of the solid wastes stemming from mining and processing of sulphidic metal ores are firstly given. Based on waste properties, the measures applied to ensure the environmentally safe recycling and disposal of sulphidic wastes are summarised. Emphasis is given on the novel techniques developed to effectively prevent and mitigate the acid drainage phenomenon from sulphidic mine wastes and tailings. Remediation measures taken to minimise the impact from waste disposal sites in the post-closure period are described.
|
Anonymous. (2003). Red menace -- Alumina waste products neutralised – As a result of the standard aluminium extraction process, a large amount of of highly alkaline 'red mud' is produced, containing various minerals left over from the bauxite, and this must be disposed of safely, treated or stored. Using a partial-neutralising process involving sea water, Virotec has developed an environmentally responsible process that turns the mud into a mild alkali that is very good at neutralising acid in, for example, acid mine waste. Materials world, 11(6), 22–25.
|
Banks, S. B. (2003). The UK coal authority minewater-treatment scheme programme: Performance of operational systems. Jciwem, 17(2), 117–122.
Abstract: This paper summarises the performance of minewater-treatment schemes which are operated under the Coal Authority's National Minewater Treatment Programme. Commonly-used design criteria and performance indicators are briefly discussed, and the performance of wetland systems which are operated by the Coal Authority is reviewed. Most schemes for which data are available remove more than 90% iron, and average area-adjusted iron-removal rates range from 1.5 to 5.5 g Fe/m(2). d. These values, which are based on performance calculations, can be distorted by several factors, including the practice of maximising wetland areas to make best use of available land. Removal rates are limited by influent iron loadings, and area-adjusted iron-removal rates should be used with caution when assessing wetland performance. Sizing criteria for all types of treatment system might be refined if more detailed data become available.
|
Banks, S. B. (2003). The Coal Authority Minewater Treatment Programme: An update on the performance of operational schemes. Land Contam. Reclam., 11(2), 161–164.
Abstract: The performance of mine water treatment schemes, operated under the Coal Authority's national Minewater Treatment Programme, is summarised. Most schemes for which data are available perform successfully and remove over 90% iron. Mean area-adjusted iron removal rates for reedbed components of treatment schemes, range from 1.5 to 5.5 g Fe/m2, with percentage iron removal rates ranging from 68% to 99%. In the majority of cases, calculated area-adjusted removal rates are limited by influent iron loadings, and the empirical sizing criterion for aerobic wetlands, based on American removal rates of 10 g Fe/m2day, remains a valuable tool in the initial stages of treatment system design and estimation of land area requirements. Where a number of schemes have required modification after becoming operational, due consideration must always be given to the potential for dramatic increases in influent iron loadings, and to how the balance between performance efficiency and aesthetic appearance can best be achieved. Continual review and feedback on the performance of treatment systems, and the problems encountered during design implementation, will enhance the efficiency and effectiveness of the Minewater Treatment Programme within the UK.
|
Beaulieu, S. (2003). Application des techniques de bioactivation et de bioaugmentation pour le traitement en conditions sulfato-réductrices des eaux de drainage minier acide. Ph.D. thesis, EÌcole Polytechnique, EÌcole Polytechnique, MontreÌal.
|