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Abstract
Water treatment plants need to stock chemicals and have enough energy as well as human 
resources to operate reliably. To avoid a process interruption, proper planning of these 
resources is imperative. Therefore, a scientifically based, practical tool to predict and fore-
cast relevant water parameters will help plant operators to know in advance which chemi-
cals and methods are necessary for polluted water management and treatment. This study 
aims to develop a system to predict and forecast mine water parameters using electrical 
conductivity (EC) and pH of mining influenced water from the Acid Mine Drainage treat-
ment plant in Springs, South Africa as an example. Three machine learning algorithms, 
namely random forest regression, gradient boosting regression and artificial neural network 
(ANN) were compared to find the best learning model to be used for predictive analysis. 
These models were developed using historical data of the years 2016 to 2021. Input vari-
ables of the models are turbidity, total dissolved solids,  SO4 and Fe, with EC and pH being 
the target outputs. Results of the models have been compared with the measured data on 
the basis of the mean absolute error and root mean square error. The results show that 
random forest and gradient boosting models perform better than the ANN model, and thus 
these models were deployed as a web application. The Long Short-Term Memory tech-
nique was used to forecast the input parameter values for 60 days, and these values were 
used to get the future values for EC and pH for the same period.
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1  Introduction and Background

Mining influenced water (MIW), especially acid mine or rock drainage (AMD/ARD) is a 
challenging problem encountered by many mining companies around the world (Verburg 
2011). MIW occurs when iron-(di)sulfide minerals such as pyrite, marcasite or pyrrhotite 
react with water and oxygen (Blowes et al. 2014; Singer and Stumm 1970). In case no 
buffer minerals such as carbonates are present, these reactions will result in AMD/ARD 
which, depending on the geological settings, may contain potentially toxic elements 
(Wolkersdorfer 2008). Water treatment plants, including AMD treatment plants, need to 
stock chemicals, have steady and enough energy and human resources to operate reli-
ably. To avoid a process interruption, proper planning of these resources is imperative.  
Therefore, a scientifically based, practical tool to predict and forecast relevant water 
parameters will help plant operators to know in advance which chemicals and methods to 
use to treat and manage polluted water.

Machine learning (ML) models are divided into three categories: supervised, unsu-
pervised and reinforcement learning, whereas this study applied supervised learning 
algorithms (Online Resource 1). Supervised learning is where a model has input vari-
ables and an output value and uses an algorithm to learn the mapping function from 
the input to the output (Swamynathan 2017). There are several tasks within supervised 
learning such as classification and regression. In this study, the main aim was on accu-
racy of the results; thus the regression ML algorithms were explored, specifically ran-
dom forest, gradient boosting and neural networks, whilst the forecasting technique used 
is the Long Short-Term Memory (LSTM) method.

Mine water quality can be evaluated using several parameters, e.g. electrical conduc-
tivity (EC), pH, major ions, turbidity or acidity. The amount of dissolved minerals in 
mine water is represented by the total dissolved solids (TDS) and EC, which is crucial 
for mine water conditions. Because EC can be used to calculate the TDS based on the 
function TDS = f(EC), it can be an indicator parameter for additional mine water con-
stituents (Hem 1985; Hubert and Wolkersdorfer 2015). Therefore, EC is one of the tar-
get outputs in the developed ML models of this study. In addition, pH measurements are 
important in determining metal concentrations that might be dissolved in MIW and the 
volume of clean water that can be discharged. Thus pH is a further target output used in 
this study. Treated mine water is usually discharged into receiving water courses or for 
industrial and commercial use. Thus, it is crucial to know the pH values of mine water 
entering the treatment plant beforehand so it can be increased or decreased accordingly 
to precipitate unwanted, potentially polluting metals.

So far, different techniques have been applied to predict the future mine water qual-
ity for optimised MIW management (e.g. Khandelwal and Singh 2005; Liu et al. 2019; 
Rooki et  al. 2011). Modelling software such as GoldSim, MATLAB Simulink, Geo-
chemists Workbench and PHREEQC have been previously favoured for this purpose 
(e.g. Nalecki and Gowan 2008; Usher et  al. 2010); however, researchers are trying to 
optimise these predictions by including artificial intelligence (AI) technology (More 
et al. 2020; Vadapalli et al. 2020). This study will present ML techniques in the form 
of a hybrid intelligent system to predict, to our knowledge, for the first time the indica-
tor mine water parameters EC and pH at a mine water treatment plant. For the models 
and forecasts, this study uses historical data of the South African Eastrand plant east of 
Johannesburg from the years 2016 to 2021 (Fig. 1).
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2  Machine Learning Algorithms Used

2.1  Random Forest Regression

Random forest, proposed by Breiman in the early 2000s, is a supervised ML algorithm 
which uses ensemble learning to perform either classification or regression tasks (Breiman 
2001) and is built on the concept of the decision trees algorithm. In this algorithm, the trees 
consist of decision nodes where the data are split and the leaves where the final outcomes 
and decisions are made (Online Resource 2; Boulesteix et al. 2012). In this study, the focus 
is on random forest regression, therefore regression trees were used to build a random for-
est model. These random forests are operated by building multiple decision trees at training 
time and give a mean prediction of the individual trees (e.g. Belgiu and Drăguţ 2016; Chen 
et  al. 2020). Random forest algorithm applies a technique known as “bagging” (Mosavi 
et al. 2021), which is used to reduce the variance for algorithms that mainly have high vari-
ance, such as decision trees. Bagging enables random forests to make decision trees run 
independently and ultimately aggregates the outputs to give the final output.

2.2  Gradient Boosting Regression

Gradient boosting regression is an algorithm similar to random forest, which uses an 
ensemble or decision trees to predict a target label. While random forest focus on reducing 
variance on complex trees, gradient boosting’s main aim is to decrease the bias of simple 
trees and make them more expressive (Johnson et  al. 2017; Zhang and Haghani 2015). 
This technique optimises the predictive value of a model over multiple steps in the learning 
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Fig. 1  Electrical conductivity and pH prediction structure showing the connection between different algo-
rithms used in this study (modified and supplemented after Vadapalli et al. 2020)
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process. Each iteration process of the decision tree (Online Resource 3) adjusts the values 
of the weights, coefficients or biases for each input variable used to build the model to 
predict the target value, with the main goal to reduce the loss function, i.e. the difference 
between the predicted and actual target values. The incremental adjustment made in each 
step of the model is the gradient, while boosting can be referred to as the activity of speed-
ing up the improvement in predictive accuracy to a desired value.

2.3  Neural Networks

Artificial neural networks (ANN) are data-driven systems that work with known input data 
without any assumptions. These neural networks are made up of a) input layers, where 
data are initially presented to the model and computation is performed, b) a hidden layer, 
where data are processed, and c) an output layer, where the results are produced (Online 
Resource 4; Russell and Norvig 2002; Wolfgang 2011). Each layer in the ANN structure 
consists of a non-linear algebraic function which is referred to as a neuron. While the input 
layer neurons are connected to the neurons of the hidden layer through “channels” that are 
assigned numerical values known as “weight”, the hidden layer neurons are associated with 
numerical values known as the “bias” and are added to the input sum. The resulting value 
is passed through a threshold function known as the activation function and the results 
determine whether a particular hidden layer neuron will get activated or not. Activated neu-
rons transmit data to the neurons of the next hidden layer over the “channels”, a process 
known as feed forward propagation (e.g. Hrnjica and Bonacci 2019; Yuan et  al. 2003). 
Consequently, in the output layer, the neuron with the highest probability determines the 
output. The predicted outputs are then compared to the actual outputs, and an error can be 
deduced and transferred back to the network, which “weights” can be adjusted according to 
the derived errors, a process which is known as back propagation (e.g. Law 2000).

2.4  Long Short‑Term Memory

Recurrent neural networks (RNN) are often used in time series analysis; however, they have 
their own limitations such as failing to process longer sequences and the vanishing gradi-
ent. The LSTM is a type of RNN that was developed to overcome the problems a basic 
RNN would encounter, and thus are used in this study. In general, the LSTM is a time  
series forecasting technique which uses the best fitting model to forecast the future  
observations using patterns and trends of previous and current data (Manaswi et al. 2018). 
When choosing a suitable model for time series prediction, it is always crucial to understand 
time-series data components such as a) seasonality – which will note the repeating patterns 
of cycles of behaviour over time, b) cyclicity – identifying repetitive changes in the time 
series and explain their positioning in the cycle, c) trends – which is frequently observed in 
a linear model and shows the decreasing and increasing behaviour of the time series, and d) 
anomalies – to detect observations deviating from the time series model (Chatfield 2000).

3  Mine Water Quality Data Set

The data set used in this study was generated through the monitoring and managing of MIW, 
with nearly daily sampling being carried out during a period of six years (2016–2021). Parameters 
that were measured during this period are rainfall, temperature, EC, TDS, total suspended solids 
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(TSS), acidity, pH, Ca, Mg,  SO4, Al, Fe and Mn and they were used in the units applied by the lab. 
All these parameters had some of the measurements missing, implying that not all of them have 
the same number of observations. Fe, turbidity and pH had the greatest number of observations, 
while rainfall and Mg had the very least of observations (Table 1). Therefore, the data had to be 
“cleaned” before it was used for training and testing ML models and for forecasting analysis.

4  Data Cleaning and Exploratory Data Analysis

4.1  Data Distribution

Graphical methods, applied in this study, show how data are distributed (Online Resource 
5) and also help in visualising the spread, i.e. dispersion, variability and scatter (Online 
Resource 6). Additionally, dependent variables and possible relationships between the 
parameters were visualised using the correlation matrix. Most of the parameters display 
statistically highly significant correlations (p < 0.001) with each other (Fig.  2). Further-
more, the Kolmogorov–Smirnov and Shapiro–Wilk tests were conducted to test the nor-
mality of the data (Table 2). In most cases, the Shapiro–Wilk test works better on small 
sample sizes (n < 50), while the Kolmogorov–Smirnov test is used on larger sample sizes 
(n ≥ 50). Therefore, the Kolmogorov–Smirnov test was relied on to conclude on the nor-
mality of the data. From the constructed graphs and tests conducted, it shows that not all 
the data were normally distributed, and all parameters have statistically significant outliers.

4.2  Outlier Visualisation, Detection and Removal

In statistical terms, an outlier is an observation that is different from the other observations 
(Wackerly et al. 2014), which means, it is not part of the population. This can come from 
random or systematic errors such as a mistake during data collection, equipment malfunc-
tioning or just an indication of variance in data collected. Outliers can be identified using 
visual or statistical methods. In this study, the box plot visualisation method was used, which 

Table 1  Mine water quality 
data supplied; n: number of 
measurements, x̅: average, σ: 
standard deviation, min: minimum 
observation, max: maximum 
observation. pH average 
calculated as –log10[∑Ci/n], 
where C is the proton activity 
(www. wolke rsdof er. info/ pH_ 
en); measured values and units as 
reported by the plant

Parameter n x̅ σ Min Max

Rainfall, mm 59 13.7 10.6 1.0 40.0
Temperature, °C 1387 23.0 2.0 17.0 29.0
EC, mS  cm−1 1387 3.0 0.1 2.44 3.22
TDS, mg  L−1 1381 2678.0 185.0 2014 3195
pH, — 1396 6.5 0.2 5.12 7.30
Turbidity, NTU 1398 54.2 59.9 0.54 450
TSS, mg  L−1 1386 74.0 75.0 0.00 378
Acidity, mg  L−1 as  CaCO3 898 310.0 41.0 166 442
Ca, mg  L−1 as CaCO 598 399.0 25.0 267 560
Mg, mg  L−1 as CaCO 591 101.0 35.0 19 389
SO4, mg  L−1 1396 1474.0 204.0 658 1988
Al, mg  L−1 692 0.1 0.0 0.00 0.19
Fe, mg  L−1 1402 97.7 15.6 0.10 179.5
Mn, mg  L−1 1384 6.6 3.4 0.00 22.9

http://www.wolkersdofer.info/pH_en
http://www.wolkersdofer.info/pH_en
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graphically shows the groups of numerical data using their quartiles. Outliers are plotted as 
points while other data are displayed within boxes (Fig. 3). Furthermore, Z-score analysis 
was applied as a statistical method on the data for outlier detection and removal. The further 
away an observation’s Z-score is from zero, the more chances of it being an anomaly. Stand-
ard cut-off values in determining outliers are Z-scores of ± 3 or even further away from zero.

4.3  “Clean” Data

Data cleaning is the process of removing data that can potentially affect the performance of the 
models in a negative way, and also using the correct statistical methods to interpolate the missing 
data. During this process, various linear regression methods with single and multiple independ-
ent variables were applied to attempt to fill-in the missing values, but it was not possible due to 
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Fig. 2  Eastrand AMD treatment plant data correlation and distribution chart showing histograms on the 
diagonal, bivariate scatter plots with fitted line on the bottom of the diagonal, and the top of the diago-
nal shows values of the correlation with significance levels p shown as asterisk: p < 0.001***, p < 0.01**, 
p < 0.05*
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the number of observations for parameters not matching. Therefore, this problem was solved by a 
robust, fast and simple method, getting the average of the three observations before and after the 
missing observation. After the data cleaning process, only nine parameters showed statistically 
significant relationships with each other. However, within these nine parameters, acidity, TSS and 

Table 2  Normality data test 
using Kolmogorov–Smirnov 
and Shapiro–Wilk methods; n: 
number of observations, p-value: 
probability value

Kolmogorov–Smirnov Shapiro–Wilk

Parameter n Test Statistic p-value Test Statistic p-value

Rainfall 59 0.143 0.004 0.912 0.000
Temperature 1387 0.089 0.000 0.970 0.000
Turbidity 1387 0.185 0.000 0.803 0.000
EC 1381 0.152 0.000 0.940 0.000
TDS 1396 0.176 0.000 0.918 0.000
pH 1398 0.111 0.000 0.947 0.000
TSS 1386 0.221 0.000 0.848 0.000
Acidity 898 0.197 0.000 0.912 0.000
Ca 598 0.341 0.000 0.469 0.000
Mg 591 0.319 0.000 0.338 0.000
SO4 1396 0.141 0.000 0.917 0.000
Al 692 0.043 0.004 0.986 0.000
Fe 1402 0.139 0.000 0.788 0.000
Mn 1384 0.195 0.000 0.858 0.000

Fig. 3  Box plots with outliers for the Eastrand Acid Mine Drainage treatment plant data from 2016 to 2021
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Mn were discarded. Acidity was dropped due to a lower number of observations, i.e. 898 out of 
1381 when compared to other observations, while TSS and Mn contains a lot of observations with 
0 mg  L−1, which makes them not effective for model training and testing. Therefore, parameters 
used for testing and training the ML models are turbidity, TDS,  SO4, Fe, EC and pH (Fig. 4).

5  Results and Discussion

5.1  Performance Results for Machine Learning Algorithms

In the random forest regression algorithm, a grid search optimisation method with 10, 50, 
100, 150 and 200 decision trees was used and resulted in 10 trees giving the best results. 
Hyper-parameter tuning for gradient boosting regression tree algorithm resulted in 100 
trees, 2 maximum tree depths and  a learning rate of 0.05. The ANN structure was also 

Fig. 4  Relationship between the parameters used to train the machine learning models with histograms 
shown on the diagonal, bivariate scatter plots with density lines on the bottom of the diagonal, and cross 
plots on the upper part of the diagonal
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determined using the optimisation techniques and yielded a model with two hidden layers of 
six neurons and a rectified linear (ReLU) activation function for each, a sigmoid activation 
function for the output layer, stochastic gradient descent optimiser with learning rate and  
momentum of 0.001 and 0.8 respectively, batch size of 16, and 50 epochs. In all the three 
algorithms, the test size was set to be 20%.

The models were for predicting continuous data, and the evaluation metrics used are 
the mean absolute error (MAE) and root mean squared error (RMSE) for both testing and 
training data sets (Table 3). ANN is the only model with MAE and RMSE values greater 
than 1 (Online Resource 7), making it the only bad performing algorithm on the supplied 
data. Further hyper-parameter tuning to improve ANN algorithm performance was not con-
ducted; therefore, this study relied on random forest and gradient boosting regression tree 
algorithms to perform predictive analysis.

The LSTM model was used to forecast the concentrations of the input parameters (tur-
bidity, TDS,  SO4 and Fe) (Fig. 5). In this algorithm, the number of past days used to pre-
dict the future was set to be 100 days. A single hidden layer LSTM having 32 memory 

Table 3  Performance on testing and training data set for random forest, gradient boosting and neural net-
work models

Testing Training

Algorithm MAE RMSE Quality MAE RMSE Quality

Random Forest 0.074 0.109 Good 0.032 0.049 Good
Gradient Boosting 0.070 0.100 Good 0.069 0.100 Good
Artificial Neural Network 3.822 4.114 Bad 3.815 4.110 Bad

Fig. 5  Forecasted values for turbidity,  SO4, TDS and Fe for 60 days using the LSTM model. Visualisation 
started on 1 November 2020 due to a small forecast of 60 days and a large historical data of 1381 observa-
tions (fitting the whole 1381 observations would make it difficult to visualise the results); A Turbidity fore-
cast, B  SO4 forecast, C TDS forecast, D Fe forecast
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units with a ReLU activation function was used. The model was fitted over 50 epochs with 
a batch size of 32 and validation split of 0.2. It was further compiled using the adaptive 
moment estimation (Adam) optimiser and mean squared error (MSE) loss, with the lower 
MSE value of 0.0035 implying that the model performed good (Online Resource 8).

5.2  Model Deployment and Web Application Results

The main goal of developing ML models is to solve a problem, and a ML model can only 
achieve that when it is deployed and used in an AI system. In this study, an application 
programming interface (API) was created to deploy ML models using the Flask and Her-
oku platforms (Fig. 6a). Flask is a web framework for Python, i.e. it provides functionality 
for building web applications. Heroku is a cloud platform on which applications can be 
deployed, managed and scaled. Steps involved in this deployment process include: a) train-
ing the model, b) creating a web application using Flask, c) committing programming code 
in GitHub, d) linking GitHub to the Heroku cloud platform, e) and deploying the model as 
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(ML Algorithm)
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Hosting
  server
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   Prediction

User

Machine Learning
         model

Training
(ML Algorithm)
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Hosting
  server
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         model
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Fig. 6  Deployment process of machine learning models  (a), and web application screenshot  (b) used to 
predict EC and pH of mining influenced water for the Eastrand AMD Water treatment plant, Springs, South 
Africa (https:// ec- ph- predi ction. herok uapp. com)

https://ec-ph-prediction.herokuapp.com
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a web application (Fig. 6b). Finally, the web application was used to predict (forecast) EC 
and pH values for 60 days (Fig. 7).

6  Conclusions

Predicted values of EC and pH with random forest and gradient boosting algorithms were not 
much different from the measured ones, giving much needed confidence and reliability in the 
prediction of mine water chemistry. Thus, the presented approach in this study is a scientifi-
cally important contribution in knowing the future quality of mine water. In addition, the ANN 
model did not produce the best results; however, it can still be considered in other instances 
with extended data sets.

Incorporating ML models in the mines can improve the current treatment practices, give 
a good mine water balance, and increase the rate at which MIW is treated. Predicting the 
chemistry of MIW will ensure that the treatment plant operator knows in advance the quan-
tity and type of chemicals and methods to use to treat and manage mine water. In mine 
water treatment, neutralising agents such as lime or quick lime are added to increase the pH 
for precipitating Fe and other metals. For AMD treatment plants it is therefore important to 
know the development of the water parameters beforehand in order to stock for chemicals 
or to control the mine water level in a pumped system. This research proved that computa-
tional-intelligence techniques are much more effective than traditional dynamic modelling 
approaches based on GoldSim, Geochemists Workbench or PHREEQC. Therefore, the pro-
posed approach can be an efficient tool and useful alternative for forecasting and predicting 
mine water quality parameters. Future research will focus on forecasting additional param-
eters such as Fe or  SO4 from other plants.

Fig. 7  EC and pH prediction visualisation using the web application
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7  Remarks

It is crucial to understand that an ML model is only as good as the input data it receives. 
Researchers often publish articles without accurate data collection and not having per-
formed thorough exploratory data analysis before deciding on suitable input parameters 
for the outputs to be predicted using ML models. In this study, data cleaning had to be per-
formed before deciding on the input parameters to use. Some models performed better with 
good accuracies, others did not, and the forecasting trend did not take the entire shape of 
the historical data, but the results proved that ML models are the future of mine water qual-
ity predictions and forecast. This implies that if the data were collected accurately from 
start to finish, without equipment malfunctioning or missing observations, model perfor-
mance would have been substantially better.

A mistake commonly done is to use accuracy to evaluate regression models (e.g. Khandelwal  
and Singh 2005; Maier et al. 2004; Rooki et al. 2011). In ML, if the task is to predict a numeri-
cal value, then regression models can be used, and if the problem is dealing with discrete label 
as a result, then classification models can be applied. ML models need to be evaluated before 
they can be put in production. Researchers find it easy to use accuracy to evaluate ML model 
performance. However, accuracy only works when an observation is similar to a prediction; it 
focuses on whether the prediction is correct or not. In regression models, many predictions are 
not similar to the observations, and sometimes have low errors. Therefore, evaluation metrics 
recommended for regression models are RMSE and MAE, as they can indicate how spread out 
the prediction error is, and they can also identify the amount of errors in measurements.

The main aim to build ML models is to deploy them and make practical business deci-
sions. In this study, a free cloud platform, Heroku, was used to show how a ML model can 
be put in production. Several scientific articles only show how good the algorithms can 
perform, and never educate the readers on the deployment of ML models. Platforms such 
as Microsoft Azure, Amazon Web Services (AWS) Lambda, Google Cloud, and Algorith-
mia are also useful tools to deploy ML models of mine water management applications.
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