toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Laboratory, N.R.M.R. url  openurl
  Title Demonstration of Aquafix and SAPS passive mine water treatment technologies at the Summitville Mine site Type RPT
  Year 2004 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Cincinnati, Ohio : National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency Place of Publication Cincinnati, Ohio Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes June; Demonstration of Aquafix and SAPS passive mine water treatment technologies at the Summitville Mine site; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/7186.pdf; Opac Approved no  
  Call Number CBU @ c.wolke @ 7186 Serial 63  
Permanent link to this record
 

 
Author Kuyucak, N. url  openurl
  Title Acid mine drainage prevention and control options Type Journal Article
  Year 2002 Publication CIM Bull. Abbreviated Journal  
  Volume 95 Issue 1060 Pages 96-102  
  Keywords acid mine drainage prevention tailings environment waste sulphides Groundwater problems and environmental effects Pollution and waste management non radioactive Surface water quality Waste Management and Pollution Policy tailings sulfide mining industry waste management  
  Abstract Acid mine drainage (AMD) is one of the most significant environmental challenges facing the mining industry worldwide. It occurs as a result of natural oxidation of sulphide minerals contained in mining wastes at operating and closed/decommissioned mine sites. AMD may adversely impact the surface water and groundwater quality and land use due to its typical low pH, high acidity and elevated concentrations of metals and sulphate content. Once it develops at a mine, its control can be difficult and expensive. If generation of AMD cannot be prevented, it must be collected and treated. Treatment of AMD usually costs more than control of AMD and may be required for many years after mining activities have ceased. Therefore, application of appropriate control methods to the site at the early stage of the mining would be beneficial. Although prevention of AMD is the most desirable option, a cost-effective prevention method is not yet available. The most effective method of control is to minimize penetration of air and water through the waste pile using a cover, either wet (water) or dry (soil), which is placed over the waste pile. Despite their high cost, these covers cannot always completely stop the oxidation process and generation of AMD. Application of more than one option might be required. Early diagnosis of the problem, identification of appropriate prevention/control measures and implementation of these methods to the site would reduce the potential risk of AMD generation. AMD prevention/control measures broadly include use of covers, control of the source, migration of AMD, and treatment. This paper provides an overview of AMD prevention and control options applicable for developing, operating and decommissioned mines.  
  Address Dr. N. Kuyucak, Golder Associates Ltd., Ottawa, Ont., Canada  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 0317-0926 ISBN Medium  
  Area Expedition Conference  
  Notes Acid mine drainage prevention and control options; 2419232; Canada 38; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17532 Serial 64  
Permanent link to this record
 

 
Author Herbert, R.B., Jr.; Benner, S.G.; Blowes, D.W. url  isbn
openurl 
  Title Reactive barrier treatment of groundwater contaminated by acid mine drainage; sulphur accumulation and sulphide formation Type Book Chapter
  Year 1998 Publication Groundwater Quality: Remediation and Protection Abbreviated Journal  
  Volume Issue Pages 451-457  
  Keywords acid mine drainage Canada chemical analysis contaminant plumes Eastern Canada ground water hydraulic conductivity hydrolysis Nickel Rim Mine Ontario pH pollution porosity pyrrhotite remediation sample preparation Sudbury Basin sulfides sulfur tailings water pollution 22, Environmental geology  
  Abstract A permeable reactive barrier was installed in August 1995 at the Nickel Rim Mine near Sudbury, Ontario, Canada, for the passive remediation of groundwater contaminated with acid mine drainage. The reactive component of the barrier consists of a mixture of municipal and leaf compost and wood chips: the organic material promotes bacterially-mediated sulphate reduction. Hydrogen sulphide, a product of sulphate reduction, may then complex with aqueous ferrous iron and precipitate as iron sulphide. This study presents the solid phase sulphur chemistry of the reactive wall after two years of operation, and discusses the formation and accumulation of iron sulphide minerals in the reactive material. The results from the solid-phase chemical analysis of core samples indicate that there is an accumulation of reduced inorganic sulphur in the reactive wall, with levels reaching 190 mu mol g (super -1) (dry weight) by July 1997.  
  Address  
  Corporate Author Thesis  
  Publisher IAHS-AISH Publication, vol.250 Place of Publication Editor Herbert, M.; Kovar, K.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN 1901502554 Medium  
  Area Expedition Conference  
  Notes Reactive barrier treatment of groundwater contaminated by acid mine drainage; sulphur accumulation and sulphide formation; GeoRef; English; 1999-065115; GQ 98 conference, Tubingen, Federal Republic of Germany, Sept. 21-24, 1998 References: 15; illus. Approved no  
  Call Number CBU @ c.wolke @ 16621 Serial 65  
Permanent link to this record
 

 
Author Smyth, D.; Blowes, D.; Ptacek, C.; Bain, J. url  openurl
  Title Application of permeable reactive barriers for treating mine drainage and dissolved metals in groundwater Type Journal Article
  Year 2004 Publication Geotechnical News Abbreviated Journal  
  Volume 22 Issue 1 Pages 39-44  
  Keywords acid mine drainage; acid rock drainage; aquifers; Canada; Cochrane District Ontario; concentration; disposal barriers; Eastern Canada; ground water; Kidd Creek; mine drainage; mines; Ontario; oxidation; permeability; permeable reactive barrier; pollutants; pollution; remediation; sulfates; sulfides; tailings; testing; Timmins Ontario; waste disposal; waste management; waste rock; waste water; water treatment 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 0823-650x ISBN Medium  
  Area Expedition Conference  
  Notes Application of permeable reactive barriers for treating mine drainage and dissolved metals in groundwater; 2006-058196; References: 20; sects. Canada (CAN); GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 5457 Serial 66  
Permanent link to this record
 

 
Author Benner, S.G.; Blowes, D.W.; Ptacek, C.J. url  openurl
  Title A full-scale porous reactive wall for prevention of acid mine drainage Type Journal Article
  Year 1997 Publication Ground Water Monitoring and Remediation Abbreviated Journal  
  Volume 17 Issue 4 Pages 99-107  
  Keywords acid mine drainage alkalinity bacteria Canada case studies concentration dissolved materials drainage Eastern Canada ground water mines observation wells Ontario permeability pH pollution porous materials recharge reduction remediation site exploration Sudbury District Ontario sulfate ion surface water waste disposal water pollution Groundwater quality Groundwater problems and environmental effects Pollution and waste management non radioactive geographical abstracts: physical geography hydrology (71 6 11) geomechanics abstracts: excavations (77 10 10) geological abstracts: environmental geology (72 14 2) groundwater protection permeable barrier acid mine drainage aquifer groundwater acid min drainage contamination permeable barrier groundwater protection permeable barrier acid mine drainage aquifer Canada, Ontario, Sudbury, Nickel Rim  
  Abstract The generation and release of acidic drainage containing high concentrations of dissolved metals from decommissioned mine wastes is an environmental problem of international scale. A potential solution to many acid drainage problem is the installation of permeable reactive walls into aquifers affected by drainage water derived from mine waste materials. A permeable reactive wall installed into an aquifer impacted by low-quality mine drainage waters was installed in August 1995 at the Nickel Rim mine site near Sudbury, Ontario. The reactive mixture, containing organic matter, was designed to promote bacterially mediated sulfate reduction and subsequent metal sulfide precipitation. The reactive wall is installed to an average depth of 12 feet (3.6 m) and is 49 feet (15 m) long perpendicular to ground water flow. The wall thickness (flow path length) is 13 feet (4 m). Initial results, collected nine months after installation, indicate that sulfate reduction and metal sulfide precipitation is occurring. Comparing water entering the wall to treated water existing the wall, sulfate concentrations decrease from 2400 to 4600 mg/L to 200 to 3600 mg/L; Fe concentration decrease from 250 to 1300 mg/L to 1.0 to 40 mg/L, pH increases from 5.8 to 7.0; and alkalinity (as CaCO<inf>3</inf>) increases from 0 to 50 mg/L to 600 to 2000 mg/L. The reactive wall has effectively removed the capacity of the ground water to generate acidity on discharge to the surface. Calculations based on comparison to previously run laboratory column experiments indicate that the reactive wall has potential to remain effective for at least 15 years.  
  Address Dr. S.G. Benner, Earth Sciences Department, University of Waterloo, Waterloo, Ont. N2L 3G1, Canada  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 1069-3629 ISBN Medium  
  Area Expedition Conference  
  Notes Review; A full-scale porous reactive wall for prevention of acid mine drainage; 0337197; United-States 46; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10621.pdf; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17555 Serial 67  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: