toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Whitehead, P.G. url  openurl
  Title Bioremediation of acid mine drainage: an introduction to the Wheal Jane wetlands project Type Journal Article
  Year 2005 Publication Science of the Total Environment Abbreviated Journal  
  Volume 338 Issue 1-2 Pages 15-21  
  Keywords mine water treatment  
  Abstract Acid mine drainage (AMD) is a widespread environmental problem associated with both working and abandoned mining operations. As part of an overall strategy to determine a long-term treatment option for AMD, a pilot passive treatment plant was constructed in 1994 at Wheat Jane Mine in Cornwall, UK. The plant consists of three separate systems; each containing aerobic reed beds, anaerobic cell and rock filters, and represents the largest European experimental facility of its kind. The systems only differ by the type of pre-treatment utilised to increase the pH of the influent minewater (pH<4): lime-dosed (LD), anoxic limestone drain (ALD) and lime free (LF), which receives no form of pre-treatment. The Wheal Jane pilot plant offered a unique facility and a major research project was established to evaluate the pilot plant and study in detail the biological mechanisms and the geochemical and physical processes that control passive treatment systems. The project has led to data, knowledge, models and design criteria for the future design, planning and sustainable management of passive treatment systems. A multidisciplinary team of scientists and managers from the U.K. universities, the Environment Agency and the Mining Industry has been put together to obtain the maximum advantage from the excellent facilities facility at Wheal Jane. (C) 2004 Elseaier B.V All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Bioremediation of acid mine drainage: an introduction to the Wheal Jane wetlands project; Wos:000227130400003; Times Cited: 1; ISI Web of Science Approved no  
  Call Number (up) CBU @ c.wolke @ 16972 Serial 116  
Permanent link to this record
 

 
Author Maniatis, T. url  openurl
  Title Biological removal of arsenic from tailings pond water at Canadian mine Type Journal Article
  Year 2005 Publication Arsenic Metallurgy Abbreviated Journal  
  Volume Issue Pages 209-214  
  Keywords mine water treatment  
  Abstract Applied Biosciences has developed a biological technology for removal of arsenic, nitrate, selenium, and other metals from mining and industrial waste waters. The ABMet((R)) technology was implemented at a closed gold mine site in Canada for removing arsenic from tailings pond water. The system included six bioreactors that began treating water in the spring of 2004. Design criteria incorporated a maximum flow of 567 L/min (150 gallons per minute) and water temperatures ranging from 10 degrees C to 15 degrees C. Influent arsenic concentrations range from 0.5 mg/L to 1.5 mg/L. The ABMet((R)) technology consistently removes arsenic to below detection limits (0.02 mg/L). Data from the full scale system will be presented, as well as regulatory requirements and site specific challenges.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Biological removal of arsenic from tailings pond water at Canadian mine; Isip:000228449400016; Times Cited: 0; ISI Web of Science Approved no  
  Call Number (up) CBU @ c.wolke @ 16976 Serial 154  
Permanent link to this record
 

 
Author Ye, Z.H. url  openurl
  Title Use of a wetland system for treating Pb/Zn mine effluent: A case study in southern China from 1984 to 2002 Type Journal Article
  Year 2004 Publication Wetlands Ecosystems in Asia: Function and Management Abbreviated Journal  
  Volume 1 Issue Pages 413-434  
  Keywords mine water treatment  
  Abstract A constructed wetland system in Guangdong Province, South of China has been used for treating Pb/Zn mine discharge since 1984. In this chapter, the performance of this system in the purification of mine discharge, metal accumulation in different ecological compartments and ecological succession within the system during the period of 1984-2002 has been reviewed. The data show that the wetland system not only effectively remove metals (mainly Pb, Zn, Cd and Cu) and total suspended solids from the mine discharge over a long period leading to significant improvement in water quality, but also gradually increase diversity and abundance of living organisms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Use of a wetland system for treating Pb/Zn mine effluent: A case study in southern China from 1984 to 2002; Isip:000226088800023; Times Cited: 0; ISI Web of Science Approved no  
  Call Number (up) CBU @ c.wolke @ 16997 Serial 155  
Permanent link to this record
 

 
Author Zhuang, J.M. url  openurl
  Title Lignor(TM) process for acidic rock drainage treatment Type Journal Article
  Year 2004 Publication Environ. Technol. Abbreviated Journal  
  Volume 25 Issue 9 Pages 1031-1040  
  Keywords mine water treatment  
  Abstract The process using lignosulfonates for acidic rock drainage (ARD) treatment is referred to as the Lignor(TM) process. Lignosulfonates are waste by-products produced in the sulfite pulping process. The present study has shown lignosulfonates are able to protect lime from developing an external surface coating, and hence to favor its dissociation. Further, the addition of lignosulfonates to ARD solutions increased the clotting and settling rate of the formed sludge. The capability of lignosulfonates to form stable metal-lignin complexes makes them very useful in retaining metal ions and thus improving the long-term stability of the sludge against leaching. The Lignor(TM) process involves metal sorption with lignosulfonates, ARD neutralization by lime to about pH 7, pH adjustment with caustic soda to 9.4 – 9.6, air oxidation to lower the pH to a desired level, and addition of a minimum amount of FeCl3 for further removal of dissolved metals. The Lignor(TM) process removes all concerned metals (especially Al and Mn) from the ARD of the Britannia Mine (located at Britannia Beach, British Columbia, Canada) to a level lower than the limits of the B.C. Regulations. Compared with the high-density sludge (HDS) process, the Lignor(TM) process has many advantages, such as considerable savings in lime consumption, greatly reduced sludge volume, and improved sludge stability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Lignor(TM) process for acidic rock drainage treatment; Wos:000224971800006; Times Cited: 0; ISI Web of Science Approved no  
  Call Number (up) CBU @ c.wolke @ 16998 Serial 117  
Permanent link to this record
 

 
Author Younger, P.L. url  openurl
  Title Passive in situ remediation of acidic mine waste leachates: progress and prospects Type Journal Article
  Year 2003 Publication Land Reclamation: Extending the Boundaries Abbreviated Journal  
  Volume Issue Pages 253-264  
  Keywords mine water treatment  
  Abstract The reclamation of former mining sites is a major challenge in many parts of the world. In relation to the restoration of spoil heaps (mine waste rock piles) and similar bodies of opencast backfill, key challenges include (i) the establishment of stable slopes and minimization of other geotechnical hazards (ii) developing and maintaining a healthy vegetative cover (iii) managing the hydrological behaviour of the restored ground. Significant advances have been made over the past four decades in relation to all four of these objectives. One of the most recalcitrant problems is the ongoing generation and release of acidic leachates, which typically emerge at the toes of (otherwise restored) spoil heaps in the form of springs and seepage areas. Such features are testament to the presence of a “perched” groundwater circulation system within the spoil, and their acidity reflects the continued penetration of oxygen to zones within the heaps which contain reactive pyrite (and other iron sulphide minerals). Two obvious strategies for dealing with this problem are disruption of the perched groundwater system and/or exclusion of oxygen entry. These strategies are now being pursued with considerable success where spoil is being reclaimed for the first time, by the installation of two types of physical barrier (dry covers and water covers). However, where a spoil heap has already been revegetated some decades ago, the destruction of an established sward or woodland in order to retro-fit a dry cover or water cover is rarely an attractive option for dealing with the “secondary dereliction” represented by ongoing toe seepages of acidic leachates. More attractive by far are passive treatment techniques, in which the polluted water is forced to flow through reactive media which serve to neutralize its acidity and remove toxic metals from solution. A brief historical review of the development of such systems reveals a general progression from using limestone as the key neutralizing agent, through a combined use of limestone and compost, to systems in which almost all of the neutralization is achieved by means of bacterial sulphate reduction in the saturated compost media of subsurface-flow bioreactors. In almost all cases, these passive treatment systems include an aerobic, surface flow wetland as the final “polishing” step in the treatment process. Such wetlands combine treatment functions (efficient removal of metals from the now-neutralized waters down to low residual concentrations, and re-oxygenating the water prior to discharge to receiving watercourses) with amenity value (attractive areas for recreational walking, bird-watching etc) and ecological value.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Passive in situ remediation of acidic mine waste leachates: progress and prospects; Isip:000183447100035; Times Cited: 0; ISI Web of Science Approved no  
  Call Number (up) CBU @ c.wolke @ 17016 Serial 158  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: