toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Younger, P.L.; Cornford, C. openurl 
  Title Mine water pollution from Kernow to Kwazulu-Natal; geochemical remedial options and their selection in practice Type Journal Article
  Year 2002 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Africa Bolivia case studies Cornwall England cost decision-making decontamination Durham England England Europe geochemistry Great Britain Hlobane Colliery hydrology Kernow England KwaZulu-Natal South Africa metals Milluni Mine mine drainage monitoring pollutants pollution Quaking Houses England remediation South Africa South America South Crofty Mine South-West England Southern Africa United Kingdom water treatment Western Europe Wheal Jane Mine 22, Environmental geology  
  Abstract Pollution by mine drainage is a major problem in many parts of the world. The most frequent contaminants are Fe, Mn, Al and SO (sub 4) with locally important contributions by other metals/metalloids including (in order of decreasing frequency) Zn, Cu, As, Ni, Cd and Pb. Remedial options for such polluted drainage include monitored natural attenuation, physical intervention to minimise pollutant release, and active and passive water treatment technologies. Based on the assessment of the key hydrological and geochemical attributes of mine water discharges, a rational decision-making framework has now been developed for deciding which (or which combinations) of these options to implement in a specific case. Five case studies illustrate the application of this decision-making process in practice: Wheal Jane and South Crofty (Cornwall), Quaking Houses (Co Durham), Hlobane Colliery (South Africa) and Milluni Tin Mine (Bolivia). In many cases, particularly where the socio-environmental stakes are particularly high, the economic, political and ecological issues will prove even more challenging than the technical difficulties involved in implementing remedial interventions which will be robust in the long term. Hence truly “holistic” mine water remediation is a multi-dimensional business, involving teamwork by a range of geoscientific, hydroecological and socio-economic specialists.  
  Address  
  Corporate Author Thesis  
  Publisher Proceedings of the Ussher Society, vol.10, Part 3 Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title 40th annual meeting of the Ussher Society Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes 2004-019557; 40th annual meeting of the Ussher Society, Saint Austell, United Kingdom, Jan. 3-4, 2002 Scott Simpson lecture References: 39; illus. incl. 3 tables; GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 16506 Serial 194  
Permanent link to this record
 

 
Author Younger, P.L. openurl 
  Title The adoption and adaptation of passive treatment technologies for mine waters in the United Kingdom Type Journal Article
  Year 2000 Publication Mine Water Env. Abbreviated Journal  
  Volume 19 Issue 2 Pages 84-97  
  Keywords wetlands SAPS aerobic wetlands acidity aerobic anaerobic compost iron metals passive reactive barrier water treatment  
  Abstract During the 1990s, passive treatment technology was introduced to the United Kingdom (UK). Early hesitancy on the part of regulators and practitioners was rapidly overcome, at least for net-alkaline mine waters, so that passive treatment is now the technology of choice for the long-term remediation of such discharges, wherever land availability is not unduly limiting. Six types of passive systems are now being used in the UK for mine water treatment: ¨ aerobic, surface flow wetlands (reed-beds); ¨ anaerobic, compost wetlands with significant surface flow; ¨ mixed compost / limestone systems, with predominantly subsurface flow (so-called Reducing and Alkalinity Producing Systems (RAPS)); ¨ subsurface reactive barriers to treat acidic, metalliferous ground waters; ¨ closed-system limestone dissolution systems for zinc removal from alkaline waters; ¨ roughing filters for treating ferruginous mine waters where land availability is limited. Each of these technologies is appropriate for a different kind of mine water, or for specific hydraulic circumstances. The degree to which each type of system can be considered “proven technology” corresponds to the order in which they are listed above. Many of these passive systems have become foci for detailed scientific research, as part of a $1.5M European Commission project running from 2000 to 2003.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1025-9112 ISBN Medium  
  Area Expedition Conference  
  Notes The adoption and adaptation of passive treatment technologies for mine waters in the United Kingdom; 1; FG 5 Abb., 1 Tab.; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 17448 Serial 198  
Permanent link to this record
 

 
Author Younger, P.L. openurl 
  Title Minewater treatment using wetlands Type Journal Article
  Year 1997 Publication Water and Environment Manager Abbreviated Journal  
  Volume 2 Issue 4 Pages 11  
  Keywords Wetlands and estuaries geographical abstracts: physical geography hydrology (71 6 8) wetlands mine drainage water treatment  
  Abstract Experiences gained by the UK Mining Industry and effluent treatment companies in theuse of wetlands for treating minewaters are discussed. Discharges from abandoned mines is a major cause of freshwater pollution in some regions. Key topics relating to the use of wetlands for minewater treatment will be discussed at a CIWEM conference in Newcastle on 5 September 1997.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Minewater treatment using wetlands; 0283405; Geobase Approved no  
  Call Number CBU @ c.wolke @ 10624 Serial 200  
Permanent link to this record
 

 
Author Wolkersdorfer, C.; Younger, P.L. openurl 
  Title Passive mine water treatment as an alternative to active systems Type Journal Article
  Year 2002 Publication Grundwasser Abbreviated Journal  
  Volume 7 Issue 2 Pages 67-77  
  Keywords Groundwater quality geographical abstracts: physical geography hydrology (71 6 11) water treatment groundwater pollution water quality mine  
  Abstract For the treatment of contaminated mine waters reliable treatment methods with low investment and operational costs are essential. Therefore, passive treatment systems recently have been installed in Great Britain and in Germany (e.g. anoxic limestone drains, constructed wetlands, reactive barriers, roughing filters) and during the last eight years such systems successfully treated mine waters, using up to 6 ha of space. In some cases with highly contaminated mine water, a combination of active and passive systems should be applied, as in any case the water quality has to reach the limits. Because not all the processes of passive treatment systems are understood in detail, current research projects (e.g. EU-project PIRAMID) were established to clarify open questions.  
  Address Dr. Ch. Wolkersdorfer, TU Bergakademie Freiberg, Lehrstuhl fur Hydrogeologie, Gustav-Zeuner-Str. 12, Freiberg/Saichen 09596, Germany c.wolke@tu-freiberg.de  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1430-483x ISBN Medium  
  Area Expedition Conference  
  Notes Passive mine water treatment as an alternative to active systems; 2428851; Passive Grubenwasserreinigung als Alternative zu aktiven Systemen. Germany 51; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17530 Serial 202  
Permanent link to this record
 

 
Author Jarvis, A.P.; Younger, P.L. openurl 
  Title Design, construction and performance of a full-scare compost wetland for mine-spoil drainage treatment at quaking houses Type Journal Article
  Year 1999 Publication Jciwem Abbreviated Journal  
  Volume 13 Issue 5 Pages 313-318  
  Keywords Wetlands and estuaries geographical abstracts: physical geography hydrology (71 6 8) composting constructed wetland design performance assessment United Kingdom EnglandCounty Durham  
  Abstract Acidic spoil-heap drainage, containing elevated concentrations of iron, aluminium and manganese, has been polluting the Stanley Burn in County Durham for nearly two decades. Following the success of a pilot-scale wetland (the first application of its kind in Europe), a full-scale wetland was installed. Waste manures and composts have been used as the main substrate which is contained within embankments constructed from compacted pulverized fuel ash. The constructed wetland, which cost less than £20,000 to build, has consistently reduced iron and aluminium concentrations and has markedly lowered the acidity of the drainage. A third phase of activities at the site aims to identify and eliminate pollutant-release 'hot spots' within the spoil.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0951-7359 ISBN Medium  
  Area Expedition Conference  
  Notes Design, construction and performance of a full-scare compost wetland for mine-spoil drainage treatment at quaking houses; 2227678; United-Kingdom 9; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17546 Serial 339  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: