toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kleinmann, R.L.P. url  openurl
  Title Treatment of mine drainage by anoxic limestone drains and constructed wetlands Type Journal Article
  Year 1998 Publication (up) Acidic Mining Lakes Abbreviated Journal  
  Volume Issue Pages 303-319  
  Keywords mine water treatment  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Treatment of mine drainage by anoxic limestone drains and constructed wetlands; Isip:000078867600016; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 8621 Serial 179  
Permanent link to this record
 

 
Author Norris, R.H. url  openurl
  Title Effectiveness Of Mine Rehabilitation In Relation To Water-Quality Type Journal Article
  Year 1987 Publication (up) Acta Biologica Hungarica Abbreviated Journal  
  Volume 38 Issue 1 Pages 127-139  
  Keywords mine water treatment  
  Abstract When mining is completed the sites may be completely restored to the originalecosystem, rehabilitated for some desirable environmental characteristics, desirable alternative ecosystemscreated or just neglected. The strategy adopted will depend on the intended uses of the parts of theenvironment (including water) affected by the mining. An example of rehabilitation of a metal mine nearthe Australian Federal Capital is used to illustrate the problems that may be encountered. These include:lack of controls while mining is underway; catastrophic events, such as the collapse of a settling dam,lack of site specific understanding of pyrite oxidation processes, particularly those that are biologicallyenhanced; the need for adequate biological information on which to base decisions to meet biologicalinformation on which to base decisions to meet biological objectives. Experience has shown that biologicalcollections such studies should be stored in museums where they will be valuable for comparisons of changesover long periods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Effectiveness Of Mine Rehabilitation In Relation To Water-Quality; Wos:A1987m197000012; Times Cited: 1; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 14735 Serial 91  
Permanent link to this record
 

 
Author Conca, J.L.; Wright, J. url  openurl
  Title An Apatite II permeable reactive barrier to remediate groundwater containing Zn, Pb and Cd Type Journal Article
  Year 2006 Publication (up) Appl. Geochem. Abbreviated Journal  
  Volume 21 Issue 12 Pages 2188-2200  
  Keywords Pollution and waste management non radioactive Groundwater quality apatite groundwater remediation zinc lead cadmium acid mine drainage copper sulfate nitrate permeability water treatment precipitation chemistry  
  Abstract Phosphate-induced metal stabilization involving the reactive medium Apatite II(TM) [Ca10-xNax(PO4)6-x(CO3)x(OH)2], where x < 1, was used in a subsurface permeable reactive barrier (PRB) to treat acid mine drainage in a shallow alluvial groundwater containing elevated concentrations of Zn, Pb, Cd, Cu, SO4 and NO3. The groundwater is treated in situ before it enters the East Fork of Ninemile Creek, a tributary to the Coeur d'Alene River, Idaho. Microbially mediated SO4 reduction and the subsequent precipitation of sphalerite [ZnS] is the primary mechanism occurring for immobilization of Zn and Cd. Precipitation of pyromorphite [Pb10(PO4)6(OH,Cl)2] is the most likely mechanism for immobilization of Pb. Precipitation is occurring directly on the original Apatite II. The emplaced PRB has been operating successfully since January of 2001, and has reduced the concentrations of Cd and Pb to below detection (2 μg L-1), has reduced Zn to near background in this region (about 100 μg L-1), and has reduced SO4 by between 100 and 200 mg L-1 and NO3 to below detection (50 μg L-1). The PRB, filled with 90 tonnes of Apatite II, has removed about 4550 kg of Zn, 91 kg of Pb and 45 kg of Cd, but 90% of the immobilization is occurring in the first 20% of the barrier, wherein the reactive media now contain up to 25 wt% Zn. Field observations indicate that about 30% of the Apatite II material is spent (consumed).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-2927 ISBN Medium  
  Area Expedition Conference  
  Notes Dec.; An Apatite II permeable reactive barrier to remediate groundwater containing Zn, Pb and Cd; Science Direct Approved no  
  Call Number CBU @ c.wolke @ 17248 Serial 44  
Permanent link to this record
 

 
Author Bamforth, S.M. url  openurl
  Title Manganese removal from mine waters – investigating the occurrence and importance of manganese carbonates Type Journal Article
  Year 2006 Publication (up) Appl. Geochem. Abbreviated Journal  
  Volume 21 Issue 8 Pages 1274-1287  
  Keywords mine water treatment  
  Abstract Manganese is a common contaminant of mine water and other waste waters. Due to its high solubility over a wide pH range, it is notoriously difficult to remove from contaminated waters. Previous systems that effectively remove Mn from mine waters have involved oxidising the soluble Mn(II) species at an elevated pH using substrates such as limestone and dolomites. However it is currently unclear what effect the substrate type has upon abiotic Mn removal compared to biotic removal by in situ micro-organisms (biofilms). In order to investigate the relationship between substrate type, Mn precipitation and the biofilm community, net-alkaline Mn-contaminated mine water was treated in reactors containing one of the pure materials: dolomite, limestone, magnesite and quartzite. Mine water chemistry and Mn removal rates were monitored over a 3-month period in continuous-flow reactors. For all substrates except quartzite, Mn was removed from the mine water during this period, and Mn minerals precipitated in all cases. In addition, the plastic from which the reactor was made played a role in Mn removal. Manganese oxyhydroxides were formed in all the reactors; however, Mn carbonates (specifically kutnahorite) were only identified in the reactors containing quartzite and on the reactor plastic. Magnesium-rich calcites were identified in the dolomite and magnesite reactors, suggesting that the Mg from the substrate minerals may have inhibited Mn carbonate formation. Biofilm community development and composition on all the substrates was also monitored over the 3-month period using denaturing gradient gel electrophoresis (DGGE). The DGGE profiles in all reactors showed no change with time and no difference between substrate types, suggesting that any microbiological effects are independent of mineral substrate. The identification of Mn carbonates in these systems has important implications for the design of Mn treatment systems in that the provision of a carbonate-rich substrate may not be necessary for successful Mn precipitation. (c) 2006 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Manganese removal from mine waters – investigating the occurrence and importance of manganese carbonates; Wos:000240297600004; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 16916 Serial 107  
Permanent link to this record
 

 
Author Sibrell, P.L. url  openurl
  Title Limestone fluidized bed treatment of acid-impacted water at the Craig Brook National Fish Hatchery, Maine, USA Type Journal Article
  Year 2006 Publication (up) Aquacultural Engineering Abbreviated Journal  
  Volume 34 Issue 2 Pages 61-71  
  Keywords mine water treatment  
  Abstract Decades of atmospheric acid deposition have resulted in widespread lake and river acidification in the northeastern U.S. Biological effects of acidification include increased mortality of sensitive aquatic species Such as the endangered Atlantic salmon (Salmo salar). The purpose of this paper is to describe the development of a limestone-based fluidized bed system for the treatment of acid-impacted waters. The treatment system was tested at the Craig Brook National Fish Hatchery in East Orland, Maine over a period of 3 years. The product water from the treatment system was diluted with hatchery water to prepare water supplies with three different levels of alkalinity for testing of fish health and Survival. Based on positive results from a prototype system used in the first year of the study, a larger demonstration system was used in the second and third years with the objective of decreasing operating costs. Carbon dioxide was used to accelerate limestone dissolution, and was the major factor in system performance, as evidenced by the model result: Alk = 72.84 X P(CO2)(1/2); R-2 = 0.975. No significant acidic incursions were noted for the control water over the course of the Study. Had these incursions occurred, survivability in the untreated water would likely have been much more severely impacted. Treated water consistently provided elevated alkalinity and pH above that of the hatchery source water. (C) 2005 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Limestone fluidized bed treatment of acid-impacted water at the Craig Brook National Fish Hatchery, Maine, USA; Wos:000235568800001; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 16942 Serial 113  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: