toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sanders, F.; Rahe, J.; Pastor, D.; Anderson, R. openurl 
  Title Wetlands treat mine runoff Type Journal Article
  Year 1999 Publication Civil Engineering Abbreviated Journal  
  Volume 69 Issue 1 Pages 53-55  
  Keywords Reclamation and conservation Groundwater problems and environmental effects geological abstracts: environmental geology (72 14 1) geomechanics abstracts: excavations (77 10 10) abandoned mine acid mine drainage constructed wetland heavy metal remediation United States Montana Blackfoot River  
  Abstract In the late 1890s, silver, lead and zinc deposits were discovered along the headwaters of the Blackfoot River, northeast of Missoula, Mont. Settlers began mining the metals in earnest, and eventually the mines became known as the Upper Blackfoot Mining Complex (UBMC). Many of the mines were operated long enough to supply metals for World War II weaponry, but after the war the mines were abandoned, and by the 1960s, their orange-tainted runoff began to concern both passersby and state officials. In 1991, the state contacted the current owners of several of those mines-including the Mike Horse and the Anaconda-to negotiate a voluntary cleanup. The American Smelting and Refining Co. (ASARCO) and the Atlantic Richfield Co. (ARCO) agreed to remediate the sites' metal-enriched, moderately to severely acidic drainage, which was discharging into the upper Blackfoot River. As part of effort to reclaim the Mike Horse and Anaconda mines, engineers with McCulley, Frick and Gilman Inc. (MFG), Boulder, Colo., developed an integrated, passive wetland treatment system that will take several years to reach full treatment capacity in the high-elevation environment, but will last for decades. (Constructed and restored wetlands have also been part of the remediation of other UBMC mines, such as the Carbonate and Paymaster mines.) The Mike Horse and Anaconda system, designed to meet National Pollutant Discharge Elimination Systems (NPDES) restrictions, concentrates primarily on zinc and iron and, to a lesser extent, on copper, lead and other metals.  
  Address F. Sanders, McCulley, Frick and Gilman Inc., Boulder, CO, United States  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0885-7024 ISBN Medium  
  Area Expedition Conference  
  Notes Wetlands treat mine runoff; 0411276; United-States; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17551 Serial 256  
Permanent link to this record
 

 
Author Rees, B.; Bowell, R.; Dey, M.; Williams, K. openurl 
  Title Passive treatment; a walk away solution? Type Journal Article
  Year 2001 Publication Mining Environmental Management Abbreviated Journal  
  Volume 9 Issue 2 Pages 7-8  
  Keywords acid mine drainage; acidification; alkalinity; bacteria; bioremediation; buffers; chemical reactions; cost; effluents; ferric iron; ferrous iron; filtration; ground water; hydrolysis; iron; metals; monitoring; oxidation; permeability; pH; pollution; remediation; substrates; sulfate ion; suspended materials; water management; water pollution; water quality; water treatment; wetlands 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0969-4218 ISBN Medium  
  Area Expedition Conference  
  Notes Passive treatment; a walk away solution?; 2001-050826; References: 3; illus. United Kingdom (GBR); GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 5722 Serial 265  
Permanent link to this record
 

 
Author Rammlmair, D.; Grissemann, C. isbn  openurl
  Title Natural attenuation in slag heaps versus remediation Type Book Chapter
  Year 2000 Publication Applied mineralogy in research, economy, technology, ecology and culture Abbreviated Journal  
  Volume Issue Pages 645-648  
  Keywords acid mine drainage; alteration; concentration; concepts; crust; deposition; design; development; diagenesis; exhalative processes; fines; fluvial features; ground water; leaching; metallurgy; mining; mining geology; mobilization; natural attenuation; physicochemical properties; Plantae; pollution; precipitation; remediation; rivers; slag; time scales; toxic materials; transportation; volatiles; wind transport 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor Rammlmair, D.; Mederer, J.; Oberthuer, T.; Heimann, R.B.; Pentinghaus, H.J.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 9058091643 Medium  
  Area Expedition Conference  
  Notes Natural attenuation in slag heaps versus remediation; GeoRef; English; 2007-039910; Sixth international congress on Applied mineralogy in research, economy, technology, ecology, and culture, Gottingen, Federal Republic of Germany, July 17-19, 2000 References: 5; illus. Approved no  
  Call Number CBU @ c.wolke @ 5864 Serial 266  
Permanent link to this record
 

 
Author Rabenhorst, M.C.; James, B.R. openurl 
  Title Acid mine drainage remediation via sulfidization in wetlands Fiscal year 1992 annual report Type RPT
  Year 1993 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage; anaerobic environment; Appalachians; concentration; decontamination; ferric iron; iron; manganese; marshes; Maryland; metals; mires; North America; oxidation; pollutants; pollution; pore water; remediation; sulfidization; transport; United States; water quality; water treatment; wetlands 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor University of Maryland, W.R.R.C.C.P.M.D.U.S. Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Acid mine drainage remediation via sulfidization in wetlands Fiscal year 1992 annual report; 1998-034327; GeoRef; English; illus. incl. 1 table University of Maryland, Water Resources Research Center, College Park, MD, United States Approved no  
  Call Number CBU @ c.wolke @ 6684 Serial 267  
Permanent link to this record
 

 
Author Plumlee, G.S. openurl 
  Title Mine-drainage waters as potential economic resources Type Journal Article
  Year 1995 Publication SEG Newsletter Abbreviated Journal  
  Volume 22 Issue Pages 6-7  
  Keywords acid mine drainage; Colorado; concentration; geochemistry; hydrochemistry; metals; mine drainage; mineral resources; mines; remediation; Rio Grande County Colorado; Summitville Mine; United States; utilization 27A, Economic geology, geology of ore deposits  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Mine-drainage waters as potential economic resources; 2004-033372; References: 7; 1 table United States (USA); GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 6428 Serial 268  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: