toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author St-Arnaud, L.C. openurl 
  Title (down) Water covers for the decommissioning of sulfidic mine tailings impoundments Type Book Chapter
  Year 1994 Publication Special Publication – United States. Bureau of Mines, Report: BUMINES-SP-06A-94 Abbreviated Journal  
  Volume Issue Pages 279-287  
  Keywords acid mine drainage; experimental studies; laboratory studies; leaching; metals; monitoring; pollution; remediation; seepage; sulfides; tailings; waste disposal; water quality 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Proceedings of the International land reclamation and mine drainage conference and Third international conference on The abatement of acidic drainage; Volume 1 of 4; Mine drainage Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Water covers for the decommissioning of sulfidic mine tailings impoundments; GeoRef; English; 2007-045181; International land reclamation and mine drainage conference and Third international conference on The abatement of acidic drainage, Pittsburgh, PA, United States, April 24-29, 1994 References: 13; illus. Approved no  
  Call Number CBU @ c.wolke @ 6586 Serial 232  
Permanent link to this record
 

 
Author Bloom, N.S.; Preus, E.; Kilner, P.I.; von der Geest, E.; Hensman, C.E. openurl 
  Title (down) Very efficient removal of toxic metals from acid mine drainage water (Berkeley Pit, Montana) with a recycled alkaline industrial waste product Hardrock mining 2002; issues shaping the industry Type Book Chapter
  Year 2002 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage; Berkeley Pit; Butte Montana; decontamination; geochemistry; hydrochemistry; industrial waste; metals; mineral composition; Montana; pollution; Silver Bow County Montana; soils; sulfates; surface water; toxic materials; trace metals; United States; waste disposal; water treatment 22 Environmental geology; 02A General geochemistry  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Very efficient removal of toxic metals from acid mine drainage water (Berkeley Pit, Montana) with a recycled alkaline industrial waste product Hardrock mining 2002; issues shaping the industry; GeoRef; English; 2007-046176; Hardrock mining 2002; issues shaping the industry, Westminster, CO, United States, May 7-9, 2002 U. S. Environmental Protection Agency, Office of Research and Development, Washington, DC, United States Approved no  
  Call Number CBU @ c.wolke @ 5625 Serial 445  
Permanent link to this record
 

 
Author Stewart, D.; Norman, T.; Cordery-Cotter, S.; Kleiner, R.; Sweeney, E.; Nelson, J.D. url  openurl
  Title (down) Utilization of a ceramic membrane for acid mine drainage treatment Type Journal Article
  Year 1997 Publication Tailings and Mine Waste '97 Abbreviated Journal  
  Volume Issue Pages 453-460  
  Keywords acid mine drainage; Black Hawk Colorado; Central City Colorado; ceramic materials; Colorado; cost; disposal barriers; geochemistry; Gilpin County Colorado; heavy metals; mines; organic compounds; pollution; remediation; surface water; tailings; United States; utilization; volatile organic compounds; volatiles; waste disposal mine water treatment  
  Abstract BASX Systems LLC has developed a treatment system based on ceramic membranes for the removal of heavy metals from an acid mine drainage stream. This stream also contained volatile organic compounds that were required to be removed prior to discharge to a Colorado mountain stream. The removal of heavy metals was greater than 99% in most cases. A decrease of 30% in chemicals required for treatment and a reduction by more than 75% in labor over a competing technology were achieved. These decreases were obtained for operating temperatures of less than 5 degrees C. This system of ceramic microfiltration is capable of treating many different types of acid mine waste streams for heavy metals removal.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 90-5410-857-6 ISBN Medium  
  Area Expedition Conference  
  Notes Jan 13-17; Utilization of a ceramic membrane for acid mine drainage treatment; Isip:A1997bg96u00050; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 8744 Serial 135  
Permanent link to this record
 

 
Author LaPointe, F.; Fytas, K.; McConchie, D. url  openurl
  Title (down) Using permeable reactive barriers for the treatment of acid rock drainage Type Journal Article
  Year 2005 Publication International journal of surface mining, reclamation and environment Abbreviated Journal  
  Volume 19 Issue 1 Pages 57-65  
  Keywords Pollution and waste management non radioactive Groundwater problems and environmental effects geological abstracts: environmental geology (72 14 2) geomechanics abstracts: excavations (77 10 10) waste management remediation mining industry pollution control acid mine drainage reactive barrier aluminium industry effluents industrial waste mineral processing industry oxidation waste handling permeable reactive barriers acid rock drainage treatment acid mine drainage environmental problem Canadian mineral industry oxidation sulphide minerals mine waste mine tailings heavy metals acid remediation technology metallurgical residues aluminium extraction industry acid mine effluents Manufacturing and Production acid mine drainage Bauxsol Canada disposal barriers effluents experimental studies heavy metals instruments oxidation permeable reactive barriers pollutants pollution pyrite pyrrhotite remediation sulfides tailings waste disposal waste management  
  Abstract Acid mine drainage (AMD) is the most serious environmental problem facing the Canadian mineral industry today. It results from oxidation of sulphide minerals (e.g. pyrite or pyrrhotite) contained in mine waste or mine tailings and is characterized by acid effluents rich in heavy metals that are released into the environment. A new acid remediation technology is presented, by which metallurgical residues from the aluminium extraction industry are used to construct permeable reactive barriers (PRBs) to treat acid mine effluents. This technology is very promising for treating acid mine effluents in order to decrease their harmful environmental effects  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1389-5265 ISBN Medium  
  Area Expedition Conference  
  Notes Using permeable reactive barriers for the treatment of acid rock drainage; 8467608; Journal Paper; SilverPlatter; Ovid Technologies Approved no  
  Call Number CBU @ c.wolke @ 16786 Serial 12  
Permanent link to this record
 

 
Author Noss, R.R.; Crago, R.W.; Gable, J.; Kerber, B.; Mafi, S. openurl 
  Title (down) Use of flue gas desulfurization sludge in abandoned mine land reclamation Type Journal Article
  Year 1997 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords abandoned mines; acid mine drainage; flue gas desulfurization sludge; land management; land use; liquid waste; mines; mining; mining geology; moisture; pH; pollution; reclamation; remediation; soils; strip mining; surface mining; waste disposal 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher The Ohio Journal of Science Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Ohio Academy of Science 106th annual meeting; progress toward water quality in the Lake Erie basin; abstracts Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes 1999-043696; Ohio Academy of Science 106th annual meeting, Bowling Green, OH, United States, April 4-6, 1997; GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 6302 Serial 282  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: