toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Foucher, S.; Battaglia-Brunet, F.; Ignatiadis, I.; Morin, D. url  openurl
  Title Treatment by sulfate-reducing bacteria of Chessy acid-mine drainage and metals recovery Type Journal Article
  Year 2001 Publication Chemical Engineering Science Abbreviated Journal  
  Volume 56 Issue 4 Pages (down) 1639-1645  
  Keywords Acid mine drainage Sulfate-reducing bacteria Sulfide precipitation Hydrogen transfer Fixed bed column reactor  
  Abstract Acid-mine drainage can contain high concentrations of heavy metals and release of these contaminants into the environment is generally avoided by lime neutralization. However, this classical treatment is expensive and generates large amounts of residual sludge. The selective precipitation of metals using H2S produced biologically by sulfate-reducing bacteria has been proposed as an alternative process. Here, we report on experiments using real effluent from the disused Chessy-les-Mines mine-site at the laboratory pilot scale. A fixed-bed bioreactor, fed with an H2/CO2 mixture, was used in conjunction with a gas stripping column. The maximum rate of hydrogen transfer in the bioreactor was determined before inoculation. kLa was deduced from measurements of O2 using Higbie and Danckwert's models which predict a dependence on diffusivity. The dynamic method of physical absorption and desorption was used. The maximum rate of H2 transfer suggests that this step should not be a limiting factor. However, an increase in H2 flow rate was observed to induce an increase in sulfate reduction rate. For the precipitation step, the gas mixture from the bioreactor was bubbled into a stirred reactor fed with the real effluent. Cu and Zn could be selectively recovered at pH=2.8 and pH=3.5, respectively. Other impurities such as Ni and Fe could also be removed at pH=6 by sulfide precipitation. Part of the outlet stream from the bioreactor was used to regulate and maintain the pH during sulfide precipitation by feeding the outlet stream back into the bioreactor. The replacement of synthetic medium with real effluent had a positive effect on sulfate reduction rate which increased by 30-40%. This improvement in bacterial efficiency may be related to the large range of oligo-elements provided by the mine-water. The maximum sulfate reduction rate observed with the real effluent was 200 mgl-1 h-1, corresponding to a residence time of 0.9 day. A preliminary cost estimation based on a treatment rate of 5 m3 h-1 of a mine effluent containing 5 gl-1 SO42- is presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2509 ISBN Medium  
  Area Expedition Conference  
  Notes Feb.; Treatment by sulfate-reducing bacteria of Chessy acid-mine drainage and metals recovery; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10064.pdf; Science Direct Approved no  
  Call Number CBU @ c.wolke @ 10064 Serial 54  
Permanent link to this record
 

 
Author Barton, C.D.; Karathanasis, A.D. url  openurl
  Title Aerobic and anaerobic metal attenuation processes in a constructed wetland treating acid mine drainage Type Book Chapter
  Year 1997 Publication AAPG Eastern Section and the Society for Organic Petrology joint meeting; abstracts Abbreviated Journal  
  Volume Issue Pages (down) 1545  
  Keywords acid mine drainage aerobic environment air-water interface anaerobic environment attenuation buffers constructed wetlands controls diffusion iron manganese metals mineral composition pollution precipitation processes SEM data solubility solution sulfate ion sulfur wetlands X-ray diffraction data 22, Environmental geology  
  Abstract The use of constructed wetlands for acid mine drainage amelioration has become a popular alternative to conventional treatment methods, however, the metal attenuation processes of these systems are poorly understood. Precipitates from biotic and abiotic zones of a staged constructed wetland treating high metal load (approx. equal to 1000 mg L (super -1) ) and low pH (approx. 3.0) acid mine drainage were characterized by chemical dissolution, x-ray diffraction, thermal analysis and scanning electron microscopy. Characterization of abiotic/aerobic zones within the treatment system suggest the presence of crystalline iron oxides and hydroxides such as hematite, lepidocrocite, goethite, and jarosite. At the air/water interface of initial abiotic treatment zones, SO (sub 4) /Fe ratios were low enough (<2.0) for the formation of jarosite and goethite, but as the ratio increased due to treatment and subsequent reductions in iron concentration, jarosite was transformed to other Fe-oxyhydroxysulfates and goethite formation was inhibited. In addition, elevated pH conditions occurring in the later stages of treatment promoted the formation of amorphous iron oxyhydroxides. Biotic wetland cell substrate characterizations suggest the presence of amorphous iron minerals such as ferrihydrite and Fe(OH) (sub 3) . Apparently, high Fe (super 3+) activity, low Eh and low oxygen diffusion rates in the anaerobic subsurface environment inhibit the kinetics of crystalline iron precipitation. Some goethite, lepidocrocite and hematite, however, were observed near the surface in biotic areas and are most likely attributable to increased oxygen levels from surface aeration and/or oxygen transport by plant roots. Alkalinity generation from limestone dissolution within the substrate and bacterially mediated sulfate reduction also has a significant role on the mineral retention process. The formation of gypsum, rhodochrocite and siderite are by-products of alkalinity generating reactions in this system and may have an impact on S, Mn, and Fe solubility controls. Moreover, the buffering of acidity through excess alkalinity appears to facilitate the precipitation and retention of metals within the system.  
  Address  
  Corporate Author Thesis  
  Publisher AAPG Bulletin Place of Publication 81 Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Aerobic and anaerobic metal attenuation processes in a constructed wetland treating acid mine drainage; GeoRef; English; 1997-067790; AAPG Eastern Section and the Society for Organic Petrology joint meeting, Lexington, KY, United States, Sep. 27-30, 1997 Approved no  
  Call Number CBU @ c.wolke @ 16630 Serial 70  
Permanent link to this record
 

 
Author Mohan, D.; Chander, S. openurl 
  Title Removal and recovery of metal ions from acid mine drainage using lignite-A low cost sorbent Type Journal Article
  Year 2006 Publication J. Hazard. Mater. Abbreviated Journal  
  Volume 137 Issue 3 Pages (down) 1545-1553  
  Keywords Geobase: Related Topics geobase: related topics (901) acid mine drainage adsorption ion iron sulfide lignite wastewater water treatment  
  Abstract Acid mine drainage (AMD), has long been a significant environmental problem resulting from the microbial oxidation of iron pyrite in presence of water and air, affording an acidic solution that contains toxic metal ions. The main objective of this study was to remove and recover metal ions from acid mine drainage (AMD) by using lignite, a low cost sorbent. Lignite has been characterized and used for the AMD treatment. Sorption of ferrous, ferric, manganese, zinc and calcium in multi-component aqueous systems was investigated. Studies were performed at different pH to find optimum pH. To simulate industrial conditions for acid mine wastewater treatment, all the studies were performed using single and multi-columns setup in down flow mode. The empty bed contact time (EBCT) model was used for minimizing the sorbent usage. Recovery of the metal ions as well as regeneration of sorbent was achieved successfully using 0.1 M nitric acid without dismantling the columns. < copyright > 2006 Elsevier B.V. All rights reserved.  
  Address D. Mohan, Department of Energy and Geo-Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, United States dm_1967@hotmail.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3894 ISBN Medium  
  Area Expedition Conference  
  Notes Oct 11; Removal and recovery of metal ions from acid mine drainage using lignite-A low cost sorbent; 2919875; Netherlands 56; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17634 Serial 295  
Permanent link to this record
 

 
Author Swayze, G.A. url  openurl
  Title Imaging spectroscopy: A new screening tool for mapping acidic mine waste Type Journal Article
  Year 2000 Publication ICARD 2000, Vols I and II, Proceedings Abbreviated Journal  
  Volume Issue Pages (down) 1531-+  
  Keywords mine water treatment  
  Abstract Imaging spectroscopy is a relatively new remote sensing tool that provides a rapid method to screen entire mining districts for potential sources of surface acid drainage. An imaging spectrometer known as the Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS) measures light reflected from the surface in 224 spectral channels from 0.4 – 2.5 mum. Spectral data from this instrument were used to evaluate mine waste at the California Gulch Superfund Site near Leadville, Colorado. Here, the process of pyrite oxidation at the surface produces acidic water that is gradually neutralized as it drains away from mine waste, depositing a central jarosite zone surrounded by a jarosite + goethite zone, in turn surrounded by a goethite zone with a discontinuous hematite rim zone. Leaching tests show that pH is most acidic in the jarosite and jarosite+goethite zones and is near-neutral in the goethite zone. Measurements indicate that metals leach from minerals and amorphous materials in the jarosite + goethite and jarosite zones at concentrations 10 – 50 times higher than from goethite zone minerals. Goethite zones that fully encircle mine waste may indicate some attenuation of leachate metals and thus reduced metal loading to streams. The potential for impact by acidic drainage is highest where streams intersect the jarosite and jarosite + goethite zones. In these areas, metal-rich acidic surface runoff may flow directly into streams. The U.S. Environmental Protection Agency estimates (U.S. EPA, 1998) that mineral maps made from AVIRIS data at Leadville have accelerated remediation efforts by two years and saved over $2 million in cleanup costs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Imaging spectroscopy: A new screening tool for mapping acidic mine waste; Isip:000169875500152; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17111 Serial 164  
Permanent link to this record
 

 
Author Ye, Z.H. url  openurl
  Title Removal and distribution of iron, manganese, cobalt, and nickel within a Pennsylvania constructed wetland treating coal combustion by-product leachate Type Journal Article
  Year 2001 Publication Journal of Environmental Quality Abbreviated Journal  
  Volume 30 Issue 4 Pages (down) 1464-1473  
  Keywords mine water treatment  
  Abstract A flow-through wetland treatment system was constructed to treat coal combustion by-product leachate from an electrical power station at Springdale, Pennsylvania. In a nine-compartment treatment system, four cattail (Typha latifolia L.) wetland cells (designated Cells I through 4) successfully removed iron (Fe) and manganese (Mn) from the inlet water; Fe and Mn concentrations were decreased by an average of 91% in the first year (May 1996-May 1997), and by 94 and 98% in the second year (July 1997-June 1998), respectively. Cobalt (Co) and nickel (Ni) were decreased by an average of 39 and 47% in the first year, and 98 and 63% in the second year, respectively. Most of the metal removed by the wetland cells was accumulated in sediments, which constituted the largest sink. Except for Fe, metal concentrations in the sediments tended to be greater in the top 5 em of sediment than in the 5- to 10- or 10- to 15-cm layers, and in Cell I than in Cells 2, 3, and 4. Plants constituted a much smaller sink for metals; only 0.91, 4.18, 0.19, and 0.38% of the Fe, Mn, Co, and Ni were accumulated annually in the aboveground tissues of cattail, respectively. A greater proportion of each metal (except Mn) was accumulated in cattail fallen litter and submerged Chara (a macroalga) tissues, that is, 2.81, 2.75, and 1.05% for Fe, Co, and Ni, respectively. Considerably higher concentrations of metals were associated with cattail roots than shoots, although Mn was a notable exception.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Removal and distribution of iron, manganese, cobalt, and nickel within a Pennsylvania constructed wetland treating coal combustion by-product leachate; Wos:000174863000040; Times Cited: 15; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17061 Serial 122  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: