toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Akcil, A.; Koldas, S. url  openurl
  Title Acid Mine Drainage (AMD): causes, treatment and case studies Type Journal Article
  Year 2006 Publication J. Cleaner Prod. Abbreviated Journal  
  Volume 14 Issue 12-13 Pages 1139-1145  
  Keywords contamination effluents government industrial pollution industrial waste mining industry research initiatives wastewater treatment acid mine drainage environmental problems mining industry government research initiatives contamination civil engineering mining quarrying activity environmental impact acid generating process acid drainage migration prevention measures effluent treatment chemical treatment biological treatment Manufacturing and Production Entwässern=Gelände Umweltbelastung Bauingenieurwesen Bergbau Sickerwasser Steinbruch Säureproduktion Neutralisation Bergbauindustrie technische Forschung Ingenieurswissenschaft Steinbruchabbau Acid Mine Drainage Mining Environmental Chemical and biological treatment  
  Abstract This paper describes Acid Mine Drainage (AMD) generation and its associated technical issues. As AMD is recognized as one of the more serious environmental problems in the mining industry, its causes, prediction and treatment have become the focus of a number of research initiatives commissioned by governments, the mining industry, universities and research establishments, with additional inputs from the general public and environmental groups. In industry, contamination from AMD is associated with construction, civil engineering mining and quarrying activities. Its environmental impact, however, can be minimized at three basic levels: through primary prevention of the acid-generating process; secondary control, which involves deployment of acid drainage migration prevention measures; and tertiary control, or the collection and treatment of effluent.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-6526 ISBN Medium  
  Area Expedition Conference  
  Notes Acid Mine Drainage (AMD): causes, treatment and case studies; Science Direct Approved no  
  Call Number CBU @ c.wolke @ 17462 Serial 36  
Permanent link to this record
 

 
Author Evangelou, V.P. url  openurl
  Title Pyrite microencapsulation technologies: Principles and potential field application Type Journal Article
  Year 2001 Publication Ecological Engineering Abbreviated Journal  
  Volume 17 Issue 2-3 Pages 165-178  
  Keywords mine water treatment Acid mine drainage Acidity Alkalinity Amelioration Coating Oxidation Surface reactions  
  Abstract In nature, pyrite is initially oxidized by atmospheric O2, releasing acidity and Fe2+. At pH below 3.5, Fe2+ is rapidly oxidized by T. ferrooxidans to Fe3+, which oxidizes pyrite at a much faster rate than O2. Commonly, limestone is used to prevent pyrite oxidation. This approach, however, has a short span of effectiveness because after treatment the surfaces of pyrite particles remain exposed to atmospheric O2 and oxidation continuous abiotically. Currently, a proposed mechanism for explaining non-microbial pyrite oxidation in high pH environments is the involvement of OH- in an inner-sphere electron-OH exchange between pyrite/surface-exposed disulfide and pyrite/surface-Fe(III)(OH)n3-n complex and/or formation of a weak electrostatic pyrite/surface-CO3 complex which enhances the chemical oxidation of Fe2+. The above infer that limestone application to pyritic geologic material treats only the symptoms of pyrite oxidation through acid mine drainage neutralization but accelerates non-microbial pyrite oxidation. Therefore, only a pyrite/surface coating capable of inhibiting O2 diffusion is expected to control long-term oxidation and acid drainage production. The objective of this study was to examine the feasibility in controlling pyrite oxidation by creating, on pyrite surfaces, an impermeable phosphate or silica coating that would prevent either O2 or Fe3+ from further oxidizing pyrite. The mechanism underlying this coating approach involves leaching mine waste with a coating solution composed of H2O2 or hypochlorite, KH2PO4 or H4SiO4, and sodium acetate (NaAC) or limestone. During the leaching process, H2O2 or hypochlorite oxidizes pyrite and produces Fe3+ so that iron phosphate or iron silicate precipitates as a coating on pyrite surfaces. The purpose of NaAC or limestone is to eliminate the inhibitory effect of the protons (produced during pyrite oxidation) on the precipitation of iron phosphate or silicate and to generate iron-oxide pyrite coating, which is also expected to inhibit pyrite oxidation. The results showed that iron phosphate or silicate coating could be established on pyrite by leaching it with a solution composed of: (1) H2O2 0.018-0.16 M; (2) phosphate or silicate 10-3 to 10-2 M; (3) coating-solution pH [approximate]5-6; and (4) NaAC as low as 0.01 M. Leachates from column experiments also showed that silicate coatings produced the least amount of sulfate relative to the control, limestone and phosphate treatments. On the other hand, limestone maintained the leachate near neutral pH but produced more sulfate than the control.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-8574 ISBN Medium  
  Area Expedition Conference  
  Notes July 01; Pyrite microencapsulation technologies: Principles and potential field application; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10063.pdf; Science Direct Approved no  
  Call Number CBU @ c.wolke @ 10063 Serial 37  
Permanent link to this record
 

 
Author Baker, K.A.; Fennessy, M.S.; Mitsch, W.J. url  openurl
  Title Designing wetlands for controlling coal mine drainage: an ecologic- economic modelling approach Type Journal Article
  Year 1991 Publication Ecological Economics Abbreviated Journal  
  Volume 3 Issue 1 Pages 1-24  
  Keywords mine drainage economic cost iron removal simulation model ecotechnology modelling approach treatment efficiency wetland design wastewater treatment USA Alabama USA Tennessee USA Ohio  
  Abstract A simulation model is developed of the efficiency and economics of an application of ecotechnology – using a created wetland to receive and treat coal mine drainage. The model examines the role of loading rates of iron on treatment efficiencies and the economic costs of wetland versus conventional treatment of mine drainage. It is calibrated with data from an Ohio wetland site and verified from multi-site data from Tennessee and Alabama. The model predicts that iron removal is closely tied to loading rates and that the cost of wetland treatment is less than that of conventional for iron loading rates of approximately 20-25 g Fe m “SUP -2” day “SUP -1” and removal efficiencies less than 85%. A wetland to achieve these conditions would cost approximately US$50 000 per year according to the model. When higher loading rates exist and higher efficiencies are needed, wetland systems are more costly than conventional treatment. -Authors  
  Address Third author School of Natural Resources & Environmental Biology Program, Ohio State Univ., Columbus, OH 43210-1085, USA  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-8009 ISBN Medium  
  Area Expedition Conference  
  Notes Mar.; Designing wetlands for controlling coal mine drainage: an ecologic- economic modelling approach; (0882174); 91h-08506; Using Smart Source Parsing pp; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10684.pdf; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17570 Serial 38  
Permanent link to this record
 

 
Author Kalin, M.; Cairns, J.; McCready, R. url  openurl
  Title Ecological engineering methods for acid mine drainage treatment of coal wastes Type Journal Article
  Year 1991 Publication Resources, conservation and recycling Abbreviated Journal  
  Volume 5 Issue 2-3 Pages 265-275  
  Keywords  
  Abstract The treatment of acid mine drainage (AMD) through the utilization of alkali generating microbes has potential as an alternate approach to conventional lime treatment. Organic matter, a source of fixed carbon for the alkali generating microbial ecosystem, has been tested in 6 different types of AMD. The AMD characteristics range in acidities from 2 mg/l to 900 mg/l (CaCO3 equivalent), while sulphate concentrations range from 75 to 7300 mg/l. Alkali generating populations identified include iron reducers, sulphate reducers and ammonifiers. In coal AMD amended with organic matter, the microbial alkali generation is dominated by ammonifiers. Concentrations of Al, Fe and Zn in the AMD water decreased with concurrent increases in pH (3.2 to 6.5) in localized areas in the test cells.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Ecological engineering methods for acid mine drainage treatment of coal wastes; Science Direct Approved no  
  Call Number CBU @ c.wolke @ 17276 Serial 39  
Permanent link to this record
 

 
Author Burgess, J.E.; Stuetz, R.M. url  openurl
  Title Activated Sludge for the Treatment of Sulphur-rich Wastewaters Type Journal Article
  Year 2002 Publication Miner. Eng. Abbreviated Journal  
  Volume 15 Issue 11 Pages 839-846  
  Keywords acid rock drainage biooxidation biotechnology environmental waste processing acid-mine drainage sulfate-reducing bacteria biological treatment waste-water metals acclimation remediation oxidation reduction removal  
  Abstract The aim of this investigation was to assess the potential of activated sludge for the remediation of sulphur-rich wastewaters. A pilot-scale activated sludge plant was acclimatised to a low load of sulphide and operated as a flow-through unit. Additional sludge samples from different full-scale plants were compared with the acclimatised and unacclimatised sludges using batch absorption tests. The effects of sludge source and acclimatisation on the ability of the sludge to biodegrade high loads of sulphide were evaluated. Acclimatisation to low-sulphide concentrations enabled the sludge to degrade subsequent high loads which were toxic to unacclimatised sludge. Acclimatisation was seen to be an effect of selection pressure on the biomass, suggesting that the treatment capability of activated sludge will develop after acclimation, indicating potential for treatment of acid mine drainage (AMD) by a standard wastewater treatment process. Existing options for biological treatment of AMD are described and the potential of activated sludge treatment for AMD discussed in comparison with existing technologies. (C) 2002 Elsevier Science Ltd.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0892-6875 ISBN Medium  
  Area Expedition Conference  
  Notes Nov.; Activated Sludge for the Treatment of Sulphur-rich Wastewaters; Isi:000179970500009; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10093.pdf; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 10093 Serial 40  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: