toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Schoeman, J.J.; Steyn, A. url  openurl
  Title Investigation into alternative water treatment technologies for the treatment of underground mine water discharged by Grootvlei Proprietary Mines Ltd into the Blesbokspruit in South Africa Type Journal Article
  Year 2001 Publication Desalination Abbreviated Journal  
  Volume 133 Issue 1 Pages 13-30  
  Keywords underground mine water treatment technologies reverse osmosis electrodialysis reversal ion-exchange water quality brine disposal treatment costs  
  Abstract Grootvlei Proprietary Mines Ltd is discharging between 80 and 100 Ml/d underground water into the Blesbokspruit. This water is pumped out of the mine to keep the underground water at such a level as to make mining possible. The water is of poor quality because it contains high TDS levels (2700-3800 mg/l) including high concentrations of iron, manganese, sulphate, calcium, magnesium, sodium and chloride. This water will adversely affect the water ecology in the Blesbokspruit, and it will significantly increase the TDS concentration of one of the major water resources if not treated prior to disposal into the stream. Therefore, alternative water desalination technologies were evaluated to estimate performance and the economics of the processes for treatment of the mine water. It was predicted that water of potable quality should be produced from the mine water with spiral reverse osmosis (SRO). It was demonstrated that it should be possible to reduce the TDS of the mine water (2000-2700-3400-4500 mg/l) to potable standards with SRO (85% water recovery). The capital costs (pretreatment and desalination) for a 80 Ml/d plant (worst-case water) were estimated at US$35M. Total operating costs were estimated at 88.1c/kl. Brine disposal costs were estimated at US$18M. Therefore, the total capital costs are estimated at US$53M. It was predicted that it should be possible to produce potable water from the worst-case feed water (80 Ml/d) with the EDR process. It was demonstrated that the TDS in the feed could be reduced from 4178 to 246 mg/l in the EDR product (65% water recovery). The capital costs (pretreatment plus desalination) to desalinate the worst-case feed water to potable quality with EDR is estimated at US$53.3M. The operational costs are estimated at 47.6 c/kl. Brine disposal costs were estimated at US$42M. Therefore, the total capital costs are estimated at US$95.3 M. It was predicted that it should be possible to produce potable water from the mine water with the GYP-CIX ion- exchange process. It was demonstrated that the feed TDS (2000- 4500 mg/l) could be reduced to less than 240 mg/l (54% water recovery for the worst-case water). The capital cost for an 80 Ml/d ion-exchange plant (worst-case water) was estimated at US$26.7M (no pretreatment). Operational costs were estimated at 60.4 c/kl. Brine disposal costs were estimated at US$55.1M. Therefore, the total desalination costs were estimated at US$81.8M. The capital outlay for a SRO plant will be significantly less than that for either an EDR or a GYP-CIX plant. The operating costs, however, of the RO plant are significantly higher than for the other two processes. Potable water sales, however, will bring more in for the RO process than for the other two processes because a higher water recovery can be obtained with RO. The operating costs minus the savings in water sales were estimated at 17.2; 6.7 and US$8.6M/y for the RO, EDR and GYP-CIX processes, respectively (worst case). Therefore, the operational costs of the EDR and GYP-CIX processes are the lowest if the sale of water is taken into consideration. This may favour the EDR and GYP-CIX processes for the desalination of the mine water.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0011-9164 ISBN Medium  
  Area Expedition Conference  
  Notes Feb. 10; Investigation into alternative water treatment technologies for the treatment of underground mine water discharged by Grootvlei Proprietary Mines Ltd into the Blesbokspruit in South Africa; Isi:000167087500002; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10184.pdf; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 17480 Serial (up) 23  
Permanent link to this record
 

 
Author Ntengwe, F.W. url  openurl
  Title An overview of industrial wastewater treatment and analysis as means of preventing pollution of surface and underground water bodies – The case of Nkana Mine in Zambia Type Journal Article
  Year 2005 Publication Phys. Chem. Earth Abbreviated Journal  
  Volume 30 Issue 11-16 Spec. Iss. Pages 726-734  
  Keywords mine water treatment Groundwater problems and environmental effects Pollution and waste management non radioactive geomechanics abstracts: excavations (77 10 10) geological abstracts: environmental geology (72 14 2) wastewater pollution control acid mine drainage Hyacinthus Zambia Southern Africa Sub Saharan Africa Africa Eastern Hemisphere World  
  Abstract The wastewaters coming from mining operations usually have low pH (acidic) values and high levels of metal pollutants depending on the type of metals being extracted. If unchecked, the acidity and metals will have an impact on the surface water. The organisms and plants can adversely be affected and this renders both surface and underground water unsuitable for use by the communities. The installation of a treatment plant that can handle the wastewaters so that pH and levels of pollutants are reduced to acceptable levels provides a solution to the prevention of polluting surface and underground waters and damage to ecosystems both in water and surrounding soils. The samples were collected at five points and analyzed for acidity, total suspended solids, and metals. It was found that the pH fluctuated between pH 2 when neutralization was forgotten and pH 11 when neutralization took place. The levels of metals that could cause impacts to the water ecosystem were found to be high when the pH was low. High levels of metals interfere with multiplication of microorganisms, which help in the natural purification of water in stream and river bodies. The fish and hyacinth placed in water at the two extremes of pH 2 and pH 11 could not survive indicating that wastewaters from mining areas should be adequately treated and neutralized to pH range 6-9 if life in natural waters is to be sustained. < copyright > 2005 Elsevier Ltd. All rights reserved.  
  Address F.W. Ntengwe, Copperbelt University, School of Technology, P.O. Box 21692, Kitwe, Zambia fntengwe@cbu.ac.zm  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1474-7065 ISBN Medium  
  Area Expedition Conference  
  Notes Review; An overview of industrial wastewater treatment and analysis as means of preventing pollution of surface and underground water bodies – The case of Nkana Mine in Zambia; 2790318; United-Kingdom 23; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10301.pdf; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17497 Serial (up) 24  
Permanent link to this record
 

 
Author Tarutis Jr, W.J.; Stark, L.R.; Williams, F.M. url  openurl
  Title Sizing and performance estimation of coal mine drainage wetlands Type Journal Article
  Year 1999 Publication Ecological Engineering Abbreviated Journal  
  Volume 12 Issue 3-4 Pages 353-372  
  Keywords mine water treatment coal mine drainage constructed wetlands efficiency first-order removal loading rate removal kinetics sizing zero-order removal constructed wetlands water-quality iron kinetics removal model phosphorus retention mechanism design Wetlands and estuaries geographical abstracts: physical geography hydrology (71 6 8) acid mine drainage effluent performance assessment remediation wetland management  
  Abstract The effectiveness of wetland treatment of acid mine drainage (AMD) was assessed using three measures of performance: treatment efficiency, area-adjusted removal, and first-order removal. Mathematical relationships between these measures were derived from simple kinetic equations. Area-adjusted removal is independent of pollutant concentration (zero-order reaction kinetics), while first-order removal is dependent on concentration. Treatment efficiency is linearly related to area-adjusted removal and exponentially related to first-order removal at constant hydraulic loading rates (flow/area). Examination of previously published data from 35 natural AMD wetlands revealed that statistically significant correlations exist between several of the performance measures for both iron and manganese removal, but these correlations are potentially spurious because these measures are derived from, and are mathematical rearrangements of, the same operating data. The use of treatment efficiency as a measure of performance between wetlands is not recommended because it is a relative measure that does not account for influent concentration differences. Area-adjusted removal accounts for mass loading effects, but it fails to separate the flow and concentration components, which is necessary if removal is first-order. Available empirical evidence suggests that AMD pollutant removal is better described by first-order kinetics. If removal is first-order, the use of area-adjusted rates for determining the wetland area required for treating relatively low pollutant concentrations will result in undersized wetlands. The effects of concentration and flow rate on wetland area predictions for constant influent loading rates also depend on the kinetics of pollutant removal. If removal is zero-order, the wetland area required to treat a discharge to meet some target effluent concentration is a decreasing linear function of influent concentration (and an inverse function of flow rate). However, if removal is first-order, the required wetland area is a non-linear function of the relative influent concentration. Further research is needed for developing accurate first-order rate constants as a function of influent water chemistry and ecosystem characteristics in order to successfully apply the first-order removal model to the design of more effective AMD wetland treatment systems.  
  Address W.J. Tarutis Jr., Department of Natural Science, Lackawanna Junior College, 501 Vine Street, Scranton, PA 18509, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-8574 ISBN Medium  
  Area Expedition Conference  
  Notes Feb.; Sizing and performance estimation of coal mine drainage wetlands; 0427766; Netherlands 46; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10596.pdf; Geobase Approved no  
  Call Number CBU @ c.wolke @ 10596 Serial (up) 25  
Permanent link to this record
 

 
Author Van Hille, R.P.; Boshoff, G.A.; Rose, P.D.; Duncan, J.R. url  openurl
  Title A continuous process for the biological treatment of heavy metal contaminated acid mine water Type Journal Article
  Year 1999 Publication Resour. Conserv. Recycl. Abbreviated Journal  
  Volume 27 Issue 1-2 Pages 157-167  
  Keywords mine water treatment biological treatment heavy metal acid mine water alkaline precipitation green-algae chlorella  
  Abstract Alkaline precipitation of heavy metals from acidic water streams is a popular and long standing treatment process. While this process is efficient it requires the continuous addition of an alkaline material, such as lime. In the long term or when treating large volumes of effluent this process becomes expensive, with costs in the mining sector routinely exceeding millions of rands annually. The process described below utilises alkalinity generated by the alga Spirulina sp., in a continuous system to precipitate heavy metals. The design of the system separates the algal component from the metal containing stream to overcome metal toxicity. The primary treatment process consistently removed over 99% of the iron (98.9 mg/l) and between 80 and 95% of the zinc (7.16 mg/l) and lead (2.35 mg/l) over a 14-day period (20 l effluent treated). In addition the pH of the raw effluent was increased from 1.8 to over 7 in the post-treatment stream. Secondary treatment and polishing steps depend on the nature of the effluent treated. In the case of the high sulphate effluent the treated stream was passed into an anaerobic digester at a rate of 4 l/day. The combination of the primary and secondary treatments effected a removal of over 95% of all metals tested for as well as a 90% reduction in the sulphate load. The running cost of such a process would be low as the salinity and nutrient requirements for the algal culture could be provided by using tannery effluent or a combination of saline water and sewage. This would have the additional benefit of treating either a tannery or sewage effluent as part of an integrated process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-3449 ISBN Medium  
  Area Expedition Conference  
  Notes Jul; A continuous process for the biological treatment of heavy metal contaminated acid mine water; Isi:000081142100017; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/9937.pdf; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 9937 Serial (up) 26  
Permanent link to this record
 

 
Author Jarvis, A.P.; Younger, P.L. url  openurl
  Title Passive treatment of ferruginous mine waters using high surface area media Type Journal Article
  Year 2001 Publication Water Res. Abbreviated Journal  
  Volume 35 Issue 15 Pages 3643-3648  
  Keywords mine water treatment passive treatment mine water accretion oxidation iron manganese water treatment  
  Abstract Rapid oxidation and accretion of iron onto high surface area media has been investigated as a potential passive treatment option for ferruginous, net-alkaline minewaters. Two pilot-scale reactors were installed at a site in County Durham, UK. Each 2.0m high cylinder contained different high surface area plastic trickling filter media. Ferruginous minewater was fed downwards over the media at various flow-rates with the objective of establishing the efficiency of iron removal at different loading rates. Residence time of water within the reactors was between 70 and 360s depending on the flow-rate (1 and 12l/min, respectively). Average influent total iron concentration for the duration of these experiments was 1.43mg/l (range 1.08-1.84mg/l; n=16), whilst effluent iron concentrations averaged 0.41mg/l (range 0.20-1.04mg/l; n=15) for Reactor A and 0.38mg/l (range 0.11-0.93mg/l; n=16) for Reactor B. There is a strong correlation between influent iron load and iron removal rate. Even at the highest loading rates (approximately 31.6g/day) 43% and 49% of the total iron load was removed in Reactors A and B, respectively. At low manganese loading rates (approximately 0.50-0.90g/day) over 50% of the manganese was removed in Reactor B. Iron removal rate (g/m3/d) increases linearly with loading rate (g/day) up to 14g/d and the slope of the line indicates that a mean of 85% of the iron is removed. In conclusion, it appears that the oxidation and accretion of ochre on high surface area media may be a promising alternative passive technology to constructed wetlands at certain sites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354 ISBN Medium  
  Area Expedition Conference  
  Notes Oct; Passive treatment of ferruginous mine waters using high surface area media; 9; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/9698.pdf; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 9698 Serial (up) 27  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: