toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Banks, S.B.; Banks, D. url  openurl
  Title Abandoned mines drainage; impact assessment and mitigation of discharges from coal mines in the UK Type Book Chapter
  Year 2001 Publication Geoenvironmental engineering Engineering Geology Abbreviated Journal  
  Volume Issue Pages 31-37  
  Keywords abandoned mines coal mines cost discharge drainage England environmental effects Europe feasibility studies Great Britain mine drainage mines mitigation pollution remediation Scotland United Kingdom Western Europe 22, Environmental geology  
  Abstract The UK has a legacy of pollution caused by discharges from abandoned coal mines, with the potential for further pollution by new discharges as groundwaters continue to rebound to their natural levels. In 1995, the Coal Authority initiated a scoping study of 30 gravity discharges from abandoned coal mines in England and Scotland. Mining information, geological information and water quality data were collated and interpreted in order to allow a preliminary assessment of the source and nature of each of the discharges. An assessment of the potential for remediation was made on the basis of the feasibility and relative costs of alternative remediation measures. Environmental impacts of the discharges and of the proposed remediation schemes were also assessed. The results, together with previous Coal Authority studies of discharges in Wales, were used by the Coal Authority, in collaboration with the former National Rivers Authority and the former Forth and Clyde River Purification Boards, to rank discharge sites in order of priority for remediation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication 60 Editor Yong, R.N.; Thomas, H.R.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume (down) Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Abandoned mines drainage; impact assessment and mitigation of discharges from coal mines in the UK; GeoRef; English; 2001-052748; British Geotechnical Society, second conference on Geoenvironmental engineering, London, United Kingdom, Sept. 1999 References: 12; illus. incl. 2 tables Approved no  
  Call Number CBU @ c.wolke @ 16515 Serial 31  
Permanent link to this record
 

 
Author Boonstra, J.; van Lier, R.; Janssen, G.; Dijkman, H.; Buisman, C.J.N.; Ballester, R.A. and A. url  openurl
  Title Biological treatment of acid mine drainage Type Book Chapter
  Year 1999 Publication Process Metallurgy Abbreviated Journal  
  Volume Issue Pages 559-567  
  Keywords  
  Abstract In this paper experience obtained with THIOPAQ technology treating Acid Mine Drainage is described. THIOPAQ Technology involves biological sulfate reduction technology and the removal of heavy metals as metal sulfide precipitates. The technology was developed by the PAQUES company, who have realised over 350 high rate biological treatment plants world wide. 5 plants specially designed for sulfate reduction are successfully operated on a continuous base (1998 status). At Budelco, a zinc refinery in the Netherlands, an acid groundwater stream is effectively treated since 1992, removing metals and sulfate. At Kennecott Utah Copper (USA) a demo plant is in operation since 1995. An acid groundwater flow is treated to remove sulfate and metals, whereas the excess sulfide is used to selectively recover copper economically. Early 1998, a demonstration project was executed at the Wheal Jane mine in Cornwall, UK. In this demonstration project it has been proven that THIOPAQ technology can effectively be used to treat the Wheal Jane Acid Mine Drainage. Relative to lime dosing technology, very high removal efficiencies of all heavy metals (including cadmium and arsenic) can be obtained.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Science B.V. Place of Publication Volume 9, Part 2 Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume (down) Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Biological treatment of acid mine drainage; Science Direct Approved no  
  Call Number CBU @ c.wolke @ 17269 Serial 32  
Permanent link to this record
 

 
Author Guay, R.; Cantin, P.; Karam, A.; Vezina, S.; Paquet, A.; Ballester, R.A. and A. url  openurl
  Title Effect of flooding of oxidized mine tailings on T. ferrooxidans and T. thiooxidans survival and acid mine drainage production: a 4 year restoration-environmental follow-up Type Book Chapter
  Year 1999 Publication Process Metallurgy Abbreviated Journal  
  Volume Issue Pages 635-643  
  Keywords  
  Abstract A pilot-scale study on the effect of flooding unoxidized and oxidized Cu/Zn tailings demonstrated the technical feasability of this technology to remediate a mining site where over 3 million tons of tailings were impounded. Full-scale flooding of the tailing pond with free running water was undertaken after the construction of an impervious dam; approximately 2 million m3 of surface water at pH 7,4 completely covered the tailings after 16 months. The minimal water column over the tailings was established at 1,20 m and reached 4,5 m, depending on the site topography. Water and tailings samples were collected from 9 different locations from the surface of the man-made lake using a specially designed borer and were analyzed for pH, conductivity, iron- and sulfur-oxidizing bacteria activity and numbers as well as the sulfate reducing bacteria (SRB) population. We showed that over a four year period of flooding, the overall population of iron-oxidizers decreased considerably; their numbers drastically fell from 1x106 to 1x102 active cells per g of oxidized tailings while the SRBs increased from 101 to 105/g. The pH of the influent, the reservoir and the effluent water remained fairly constant between 6,9 up to 7,4 over the entire period. During this time, interstitial water pH increased from 2,9 to 4,3 in flooded tailings where lime could not be incorporated in the first 20 cm of tailings; elsewhere, the pH of the tailings suspensions remained fairly constant around neutral values (pH 7,0). Dissolved oxygen was measured at fixed intervals and remained also constant between 6 and 7.5 mg/L while water temperatures fluctuated below freezing point to +20C respectively in winter and summer season.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Science B.V. Place of Publication Volume 9, Part 2 Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume (down) Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Effect of flooding of oxidized mine tailings on T. ferrooxidans and T. thiooxidans survival and acid mine drainage production: a 4 year restoration-environmental follow-up; Science Direct Approved no  
  Call Number CBU @ c.wolke @ 17271 Serial 33  
Permanent link to this record
 

 
Author Wolkersdorfer, C. url  openurl
  Title Mine water tracer tests as a basis for remediation strategies Type Journal Article
  Year 2005 Publication Chemie der Erde Abbreviated Journal  
  Volume 65 Issue Suppl. 1 Pages 65-74  
  Keywords Mine water treatment Stratification Convection First flush Tracer tests Microspheres Reactive transport Groundwater problems and environmental effects Pollution and waste management non radioactive acid mine drainage remediation  
  Abstract Mining usually causes severe anthropogenic changes by which the ground- or surface water might be significantly polluted. One of the main problems in the mining industry are acid mine drainage, the drainage of heavy metals, and the prediction of mine water rebound after mine closure. Therefore, the knowledge about the hydraulic behaviour of the mine water within the flooded mine might significantly reduce the costs of mine closure and remediation. In the literature, the difficulties in evaluating the hydrodynamics of flooded mines are well described, but only few tracer tests in flooded mines have been published so far. Most tracer tests linked to mine water problems were related to either pollution of the aquifer or radioactive waste disposal and not the mine water itself. Applying the results of the test provides possibilities f or optimizing the outcome of the source-path-target methodology and therefore diminishes the costs of remediation strategies. Consequently, prior to planning of remediation strategies or numerical simulations, relatively cheap and reliable results for decision making can be obtained via a well conducted tracer test. < copyright > 2005 Elsevier GmbH. All rights reserved.  
  Address C. Wolkersdorfer, TU Bergakademie Freiberg, Lehrstuhl fur Hydrogeologie, 09596 Freiberg, Sachsen, Germany c.wolke@tu-freiberg.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume (down) Series Issue Edition  
  ISSN 0009-2819 ISBN Medium  
  Area Expedition Conference  
  Notes Sep 19; Mine water tracer tests as a basis for remediation strategies; 2767887; Germany 34; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17499 Serial 34  
Permanent link to this record
 

 
Author Rodiek, J.; Verma, T.R.; Thames, J.L. url  openurl
  Title Disturbed land rehabilitation in Lynx Creek watershed Type Journal Article
  Year 1975 Publication Landscape and Planning Abbreviated Journal  
  Volume 2 Issue Pages 265-282  
  Keywords  
  Abstract Rodiek, J., Verma, T.R. and Thames, J.L., 1976. Disturbed land rehabilitation in Lynx Creek Watershed. Landscape Plann., 2: 265-282. The Lynx Creek Watershed is located on the Prescott National Forest about 8 km south of Prescott, Arizona. The watershed, with an area of 7304 ha, has experienced intensive copper and gold mining activities in the past. Approximately 13% of the area still consists of patented mining claims (mainly copper). There are numerous abandoned mine shafts, waste dumps and mine tailings in the area. Past mining activities in the watershed have caused significant deterioration in water quality within and downstream from the mining sites. Mine drainage includes water flowing from mine shafts, surface runoff and seepage from mining dumps. Drainage from the numerous old mining sites contributes to the toxic mineral and sediment pollution of the water resources in the area. The pollutants in the form of dissolved, suspended or other solid mineral wastes and debris, enter in the streams of ground water. Aquatic life and recreation potential of the watershed is greatly reduced by the water pollution problem from the abandoned mines. The pollutants from the abandoned mines enter into Lynx Lake which is located 10 km southeast of Prescott. Lynx Lake, a trout fisheries lake, was created by a dam built in 1963 by the Arizona Game and Fish Department. The lake is 22 surface hectares in size with the storage capacity of 1.85 x 106 m3. The average yearly flow of sediment into the lake is 2900 m3. The sediment is slightly acidic and has a high concentration of copper, manganese, iron, zinc, and sulfates. The Sheldon dump and tailings pond are considered two major sources of pollution. Increasing need to direct additional attention toward mineral related problems made it necessary to coordinate U.S. Forest Service efforts with others involved in mining and reclamation. The Forest Service started SEAM (Surface Environment And Mining) in 1972 to coordinate interagency reclamation efforts. The Sheldon Mine dump and tailings pond were undertaken as a reclamation project through the coordinated efforts of the Forest Service, and the School of Renewable Natural Resources, University of Arizona at Tucson. The project is aimed at reclaiming some of the abandoned spoils in the Lynx Creek watershed and monitoring of water quality in the creek to evaluate the effectiveness of reclamation procedures. The reclamation approach includes recontouring, revegetating, drainage control and visual impact modification activities. The results to date have been encouraging. There was an excellent vegetation cover established within 5 weeks of seeding. Runoff and sediment control on the regraded slopes seemed quite effective. The methodology and technological experience gained from the reclamation project will provide invaluable information for reclaiming any abandoned mining sites within the Ponderosa Pine Ecosystem.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume (down) Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Disturbed land rehabilitation in Lynx Creek watershed; Science Direct Approved no  
  Call Number CBU @ c.wolke @ 17284 Serial 35  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: