toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Mataix Gonzalez, C.; Escribano Bombin, M. openurl 
  Title Sistemas de control y tratamiento de drenajes acidos de minas. Control and treatment systems for acid mine drainage Type Journal Article
  Year 1996 Publication Ingeopres Abbreviated Journal  
  Volume (down) 42 Issue Pages 15-18  
  Keywords acid mine drainage; dredging; effects; inorganic acids; metal ores; mines; pollution; sewage; sulfuric acid; water pollution; water treatment 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1136-4785 ISBN Medium  
  Area Expedition Conference  
  Notes Sistemas de control y tratamiento de drenajes acidos de minas. Control and treatment systems for acid mine drainage; 1997-066186; References: 7; 4 plates Spain (ESP); GeoRef; Spanish Approved no  
  Call Number CBU @ c.wolke @ 6385 Serial 306  
Permanent link to this record
 

 
Author Oleary, W. url  openurl
  Title Wastewater recycling and environmental constraints at a base metal mine and process facilities Type Journal Article
  Year 1996 Publication Water Sci. Technol. Abbreviated Journal  
  Volume (down) 33 Issue 10-11 Pages 371-379  
  Keywords mine water treatment  
  Abstract In temperate areas of abundant freshwater there is seldom an urgency to recycle. The statutory protection of inland waters for beneficial uses such as drinking, food processing and game fishing is requiring industries to choose recycling. A European success in this trend is a base metal mining/milling industry which, since 1977, is implementing hydraulic, hydrological, treatment and ecological studies with wastewaters and mine tailings. A model activity, located 50 km from Dublin is considered. Zinc and lead concentrates produced and exported to smelters ultimately yield approximately 194,000 t and 54,000 t of these respective metals (32 and 21 percent of European production). Water use as originally planned would have been approximately 6m(3)/t of ore milled. While ore milling increased by 25 percent to 8,500t/d in 1993, water use declined by 33 percent to 4m(3)/t. The components making up this reduction range from milling technology efficiency to greater recycling from the 165 ha tailings pond. Environmental standards, based on framework regulations originating in EU Directives, have been instrumental in achieving wastewater savings. A conclusion is the value of integrating water quantity, quality, recycling, storage, production and other factors early in project planning. Copyright (C) 1996 IAWQ. Published by Elsevier Science Ltd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Wastewater recycling and environmental constraints at a base metal mine and process facilities; Wos:A1996vb13300041; Times Cited: 1; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17170 Serial 84  
Permanent link to this record
 

 
Author Gong, Z.; Huang, J.; Jiang, H. openurl 
  Title Study of comprehensive retrieval utilization and the treatment of acid mine wastewater Type Journal Article
  Year 1996 Publication Zhongnan Gongye Daxue Xuebao = Journal of Central South University of Technology Abbreviated Journal  
  Volume (down) 27 Issue 4 Pages 432-435  
  Keywords acid mine drainage Asia China copper Far East heavy metals metals pH pollution sulfides utilization waste water water 22, Environmental geology  
  Abstract Impact of precipitating on removing harmful metal ion in the acid mine wastewater with pH neutralizer and sulfide was studied. The possible way of retrieving heavy metal ion in wastewater was probed. The techniques for lime carbonate to reject iron for hydrogen sulfide to precipitate copper and for zinc-lime cream neutralization flocculation to treat, mine acid wastewater were chosen. The final water quality may reach national effluent standard; the copper content was 32% in the sulfide slag.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1005-9792 ISBN Medium  
  Area Expedition Conference  
  Notes Study of comprehensive retrieval utilization and the treatment of acid mine wastewater; 1998-066886; References: 4; 4 tables China (CHN); GeoRef; Chinese Approved no  
  Call Number CBU @ c.wolke @ 16650 Serial 370  
Permanent link to this record
 

 
Author Juby, G.J.G. url  openurl
  Title Desalination of calcium sulphate scaling mine water: Design and operation of the SPARRO process Type Journal Article
  Year 1996 Publication Water Sa Abbreviated Journal  
  Volume (down) 22 Issue 2 Pages 161-172  
  Keywords mine water treatment  
  Abstract The South African mining industry discharges relatively small quantities of mine service water to the environment, but these effluents contribute substantially to the salt load of the receiving waters. The poor quality of service water also has significant cost implications on the mining operations. Of the two main types of mine service water encountered in the gold mining industry, the so-called calcium sulphate scaling types is found in the majority of cases. Preliminary testwork on this type of water using membrane desalination processes revealed that only the seeded reverse osmosis type of process showed promise. To overcome certain process problems and high operating costs with this system, a novel membrane desalination technique incorporating seeded technology, called the SPARRO (slurry precipitation and recycle reverse osmosis) process, was developed. The novel features of the new process included; a lower linear slurry velocity in the membrane tubes, a lower seed slurry concentration, a dual pumping arrangement to a tapered membrane stack, a smaller reactor and a modified seed crystal and brine blow-down system. Evaluation of the SPARRO process and its novel features, over a five-year period, confirmed its technical viability for desalinating calcium sulphate-scaling mine water. The electrical power consumption of the process was approximately half that of previous designs, significantly improving its efficiency. Membrane performance was evaluated and was generally unsatisfactory with both fouling and hydrolysis dominating at times, although operating conditions for the membranes were not always ideal. The precise cause(s) for the membrane degradation was not established, but a mechanism for fouling (based upon the presence of turbidity in the mine water) and a hypothesis fora possible cause of hydrolysis (alluding to the presence of radionuclides in the mine water) were proposed. Product water from the SPARRO process has an estimated gross unit cost (including capital costs) of 383 c/m(3) (1994).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Desalination of calcium sulphate scaling mine water: Design and operation of the SPARRO process; Wos:A1996uh88100009; Times Cited: 5; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17168 Serial 86  
Permanent link to this record
 

 
Author Gazea, B.; Adam, K.; Kontopoulos, A. url  openurl
  Title A review of passive systems for the treatment of acid mine drainage Type Journal Article
  Year 1996 Publication Minerals Engineering Abbreviated Journal  
  Volume (down) 9 Issue 1 Pages 23-42  
  Keywords Acid rock drainage bacteria environmental pollution  
  Abstract This review presents the current state of development of the passive mine water treatment technologies. The background of passive treatment is reviewed and the chemical and biological processes involved in metals removal and acidity neutralisation are detailed. The types of currently existing passive treatment technologies and their applicability range as defined by the mine water chemistry are presented. Finally, the performance of passive systems constructed for the treatment of acid mine drainage from both coal and sulphide metal mines is summarised.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0892-6875 ISBN Medium  
  Area Expedition Conference  
  Notes Jan.; A review of passive systems for the treatment of acid mine drainage; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10076.pdf; Science Direct Approved no  
  Call Number CBU @ c.wolke @ 17468 Serial 43  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: