toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Lushnikova, O.Y. openurl 
  Title Kompleksirovaniye metodov tamponazha i biolokatsii dlya zashchity podzemnykh vod ot zagryazneniya i istoshcheniya. Combined methods of grouting and biolocation for protection of ground water from pollution and depletion Type Journal Article
  Year 1996 Publication Izvestiya Vysshikh Uchebnykh Zavedeniy. Gornyy Zhurnal Abbreviated Journal  
  Volume (down) 1996 Issue 12 Pages 49-52  
  Keywords acid mine drainage; conservation; ecology; fluorimetry; geochemistry; ground water; grouting; hydrology; industrial waste; land use; leaking underground storage tanks; mines; monitoring; natural resources; pollutants; pollution; reclamation; soil treatment; soils; toxic materials; waste disposal; water quality; water regimes; water table 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0536-1028 ISBN Medium  
  Area Expedition Conference  
  Notes Kompleksirovaniye metodov tamponazha i biolokatsii dlya zashchity podzemnykh vod ot zagryazneniya i istoshcheniya. Combined methods of grouting and biolocation for protection of ground water from pollution and depletion; 1997-070630; Russian Federation (RUS); GeoRef; Russian Approved no  
  Call Number CBU @ c.wolke @ 6326 Serial 312  
Permanent link to this record
 

 
Author Al, T.A. url  openurl
  Title Storm-water hydrograph separation of run off from a mine-tailings impoundment formed by thickened tailings discharge at Kidd Creek, Timmins, Ontario Type Journal Article
  Year 1996 Publication Journal of Hydrology Abbreviated Journal  
  Volume (down) 180 Issue 1-4 Pages 55-78  
  Keywords mine water treatment  
  Abstract The Kidd Creek Cu-Zn sulphide mine is located near Timmins, Ontario. Mill tailings are thickened and deposited as a thickened slurry in a circular, conical-shaped pile with an area of approximately 1200 ha. Deposition of tailings as a thickened slurry results in a relatively uniform grain-size distribution and hydraulic conductivity, and a thick tension-saturated zone above the water table. The tailings are drained by numerous small, ephemeral stream channels, which have developed in a radial pattern. During storms, water from these streams collects in catchment ponds where it is held before treatment. The contribution of tailings pore water to the run off is of interest because of the potential for discharge of pore water containing high concentrations of Fe(II)-acidity, metals and SO4 to the stream. Hydraulic head measurements, measurements of water-table elevation and groundwater how modelling were conducted to determine the mechanisms responsible for tailings pore water entering the surface streams. Chemical hydrograph separation of storm run off in one of these streams, during three rainfall events, using Na and Cl as conservative tracers, indicates that the integrated tailings pore water fraction makes up between less than 1% and 20% of the total hydrograph. This range is less than the maximum fraction of tailings pore water of 22-65% reported for run off from a conventional tailings deposit. At this site, preferential flow through permeable fractures may be the dominant mechanism causing discharge of tailings pore water to storm run off. Estimates of the mass of Fe(II) that discharges to the surface run off from the pore water range up to 2800 mg s(-1) during a moderate intensity, long duration rainfall event. The greatest potential for discharge of significant masses of solutes derived from the pore water exists during long duration rainfall events, when the water table rises to the surface over large areas of the tailings impoundment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Storm-water hydrograph separation of run off from a mine-tailings impoundment formed by thickened tailings discharge at Kidd Creek, Timmins, Ontario; Wos:A1996up76700004; Times Cited: 7; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17162 Serial 85  
Permanent link to this record
 

 
Author Matsuoka, I. openurl 
  Title Mine drainage treatment Type Journal Article
  Year 1996 Publication Shigen to Sozai = Journal of the Mining and Materials Processing Institute of Japan Abbreviated Journal  
  Volume (down) 112 Issue 5 Pages 273-281  
  Keywords acid mine drainage; Asia; Far East; Japan; mine dewatering; mine drainage; mines; pollution; water treatment 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0916-1740 ISBN Medium  
  Area Expedition Conference  
  Notes Mine drainage treatment; 1997-062437; References: 66; illus. incl. 9 tables Japan (JPN); GeoRef; Japanese Approved no  
  Call Number CBU @ c.wolke @ 6342 Serial 305  
Permanent link to this record
 

 
Author Ericsson, B.; Hallmans, B. url  openurl
  Title Treatment of saline wastewater for zero discharge at the Debiensko coal mines in Poland Type Journal Article
  Year 1996 Publication Desalination Abbreviated Journal  
  Volume (down) 105 Issue 1-2 Pages 115-123  
  Keywords mine water  
  Abstract The drainage water from mines in Poland has a daily contribution of, in the order of magnitude, 6,500 tons of chlorides and 0.5 ton of sulphates to the rivers Vistula (Wisla) and Oder (Odra). The largest amounts of these salts, about 78%, derive from 18 mines located mainly in the Katowice mine district. The high salt content in the water from the Vistula prevents at present its use in agriculture and causes tremendous economic losses due to corrosion attacks on pipes, machines, etc., within the industry. At present only about 4% of the river water can be classified as drinking water. To combat this problem a desalination project in Katowice has now almost been completed, including advanced treatment of wastewater for zero discharge from the two adjacent coal mines, Debiensko and Budryk. It implies elimination of 310 tons/d of salt discharge to the Odra River. The complete treatment processes are divided into three main sections: (1) pretreatment before reverse osmosis (RO) of about 12,400 m3/d drainage water from the two mines with a salinity of around 16,000 mg/l TDS on the average; (2) RO plant including post-treatment of the RO permeate; (3) a thermal plant for concentration of brine (about 4,600 m3/d) and separation of sodium chloride (NaCl) by crystallization, centrifuging and drying. The RO pretreatment includes algicide dosing in a storage tank, disinfection, flocculation/sedimentation and dual media filtration as well as granular activated carbon filtration. After a two-stage microfilter system (50 μ and 5 μ, respectively), the pretreated water is desalinated at 6-7 MPa in a RO system with spiral wound RO membranes. The RO permeate is decarbonated in a part-flow followed by addition of chemicals for disinfection and increase of the temporary hardness before distribution in the drinking water net. The flow into the thermal plant consists of the RO reject (about 2,700 m3/d) with a salinity of around 80 g/l TDS and the brine flow (about 1,870 m3/d) from the Budryk mine with about the same salinity. The first section of the thermal plant is composed of two brine concentrators, designed by Resources Conservation Company (RCC), USA. By using the seed crystal recycling technique it is possible to concentrate the feed to near the precipitation point for NaCl. The second section of the thermal plant includes one crystallizer for production of NaCl, two pusher centrifuges for salt removal from supersaturated brine and one fluidized bed dryer. The crystallizer is a forced circulation submerged-tube evaporator equipped with a mechanical vapor compressor. An additional section is also planned to be constructed for treatment of the purge from the crystallizer in order to recover other valuable chemical products and distillate. The process is fully automatic and controlled by programmable logic controllers. The plant has finally been designed by Energotechnika, Poland, after preparation of technical and economical planning of the project in coordination with Nordcap Ltd., RCC and VBB Viak-SWECO, Stockholm. In the summer 1994 the thermal plant was started up, and the RO plant is expected to be in operation during the spring 1995. The paper covers the project design with illustrations of the main parts of the plant and summarizes the results of the initial operation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0011-9164 ISBN Medium  
  Area Expedition Conference  
  Notes June; Treatment of saline wastewater for zero discharge at the Debiensko coal mines in Poland; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/9451.pdf; Science Direct Approved no  
  Call Number CBU @ c.wolke @ 17274 Serial 53  
Permanent link to this record
 

 
Author Orava, D.A.; Swider, R.C. openurl 
  Title Inhibiting acid mine drainage throughout the mine life cycle Type Journal Article
  Year 1996 Publication CIM Bull. Abbreviated Journal  
  Volume (down) 89 Issue 999 Pages 52-56  
  Keywords Umweltschutz Bergbau Erzaufbereitung Exploration Säure Industrieabwasser Oxidation Sulfid Kanada Wasserhaltung Aufbereitungsberge Waschberge  
  Abstract The technical knowledge and practical experience accumulated by industry and others in abating acid mine drainage (AMD) is being proactively applied at every phase of the mine life cycle. This paper traces the mine life cycle from exploration to post closure monitoring and maintenance, and reviews AMD abatement measures that have become an integral component of exploration and mining activities. Attention is increasingly being given to evaluating AMD potential as part of exploration work, and studies related to project feasibility and design. Mining, mineral processing and waste management options are selected taking into consideration their suitability to inhibit AMD. These inhibition measures are typically committed to in closure plans submitted at the permitting stage. Mines are operated and decommissioned, often progressively, as planned and in accordance with environmental protection policies. Es wird über das Problem der Säurebildung aus sulfidischen Aufbereitungsbergen und taubem Gestein im Verlauf des Existenzzyklus eines Bergwerkes berichtet. In Kanada werden seit etwa 10 Jahren intensive Forschungen für Vorhersage, Kontrolle und Eindämmung von Saürebildungen im Bergbau betrieben. Schwerpunkt ist dabei die sulfidische Oxidation (2FeS2 + 7O2 = 2FeSO4 + 2H2SO4) unter Einwirkung verschiedener physikalischer, geochemischer und biologischer Faktoren. Diese Reaktion führt zu einem Komplex weiterer chemischer Reaktionen unter Bildung von zusätzlicher Säure und Lösung von Metallen. Daraus ergeben sich zwei Hauptmöglichkeiten diesen Prozeß zu steuern: 1. die Sulfidoxidation verhindern, 2. den Oxidationsprozeß verlangsamen. Mit dem heutigen Wissensstand ist es möglich, das Säurebildungspotential von Aufbereitungsbergen zu bestimmen, den Prozeß der Sulfidoxidation von Mineralen unter bestimmten physikalischen, geochemischen und biologischen Bedingungen zu modellieren und die Säurebildung von Aufbereitungsbergen und sulfidischen Gesteinen einzudämmen. Im einzelnen werden Maßnahmen zur Bewertung des Säurebildungspotentials und zur Kontrolle und Reduzierung dieses Prozesses während der Existenzstadien Exploration, Durchführbarkeitsstudie und Genehmigung, Gewinnung und Stillegung eines Bergwerkes erläutert. An Beispielen wird gezeigt, daß bei rechtzeitgem Erkennen des Säurebildungspotentials in der Phase der Exploration Verfahren und Maßnahmen bezüglich Aufbereitung, Umgang mit Aufbereitungsbergen ausgewählt werden können.  
  Address SENES Consultants, Richmond Hill, CA; Swider Consulting Engineers, Toronto, CA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0317-0926 ISBN Medium  
  Area Expedition Conference  
  Notes Inhibiting acid mine drainage throughout the mine life cycle; 11083, BERG , 31.07.96; Words: 383; U9608 0110 586; 5 Seiten, 3 Bilder, 3 Tabellen, 16 Quellen 3UXX *Belastung von Wasser, Wasserreinhaltung, Abwasser* 3ATB *Technikfolgenabschätzung* 3MZ *Bergbau, Tunnelbau, Erdöl /Erdgasförderung, Bohrtechnik* 3AXF *Forschungsentwicklung, Forschungspolitik*; BERG, Copyright FIZ Technik e.V.; EN Englisch Approved no  
  Call Number CBU @ c.wolke @ 17610 Serial 278  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: