|   | 
Details
   web
Records
Author Lin, C.; Lu, W.; Wu, Y.
Title Agricultural soils irrigated with acidic mine water: Acidity, heavy metals, and crop contamination Type Journal Article
Year 2005 Publication Australian Journal of Soil Research Abbreviated Journal
Volume 43 Issue 7 Pages 819-826
Keywords Contamination and remediation Irrigated agriculture Soil studies geographical abstracts: physical geography soils (71 5 14) international development abstracts: agriculture and rural development (74 1 8) ecological abstracts: terrestrial ecology (73 4 2) bioaccumulation irrigation agricultural soil acid mine drainage pH crop plant heavy metal China Far East Asia Eurasia
Abstract Agricultural soils irrigated with acidic mine water from the Guangdong Dabaoshan Mine, China, were investigated. The pH of the soils could be as low as 3.9. However, most of the mineral acids introduced into the soils by irrigation were transformed to insoluble forms through acid buffering processes and thus temporarily stored in the soils. Different heavy metals exhibited different fraction distribution patterns, with Zn and Cu being mainly associated with organic matter and Pb being primarily bound to oxides (statistically significant at P = 0.05). Although the mean of exchangeable Cd was greatest among the Cd fractions, there was no statistically significant difference between the exchangeable Cd and the oxide-bound Cd (the 2nd greatest fraction) or between the exchangeable Cd and the carbonate-bound Cd (the 3rd greatest fraction). It was also found that there were generally good relationships between the concentrations of various Zn, Cu, Pb, and Cd fractions and pH, suggesting that a major proportion of each heavy metal in the soils was mainly derived from the acidic irrigation water. The results also show that the crops grown in these soils were highly contaminated by heavy metals, particularly Cd. The concentration of Cd in the edible portions of most crops was far in excess of the limits set in China National Standards for Vegetables and Fruits and this can be attributable to the extremely high transfer rate of Cd from the soils to the crops under the cropping system adopted in the study area. < copyright > CSIRO 2005.
Address C. Lin, College of Resources and Environment, South China Agricultural University, Guangzhou 510642, China cxlin@scau.edu.cn
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0004-9573 ISBN Medium
Area Expedition Conference
Notes Agricultural soils irrigated with acidic mine water: Acidity, heavy metals, and crop contamination; 2828050; Australia 29; Geobase Approved no
Call Number CBU @ c.wolke @ 17496 Serial 314
Permanent link to this record
 

 
Author Wolkersdorfer, C.
Title Mine water tracer tests as a basis for remediation strategies Type Journal Article
Year 2005 Publication Chemie der Erde Abbreviated Journal
Volume 65 Issue Suppl. 1 Pages 65-74
Keywords Mine water treatment Stratification Convection First flush Tracer tests Microspheres Reactive transport Groundwater problems and environmental effects Pollution and waste management non radioactive acid mine drainage remediation
Abstract Mining usually causes severe anthropogenic changes by which the ground- or surface water might be significantly polluted. One of the main problems in the mining industry are acid mine drainage, the drainage of heavy metals, and the prediction of mine water rebound after mine closure. Therefore, the knowledge about the hydraulic behaviour of the mine water within the flooded mine might significantly reduce the costs of mine closure and remediation. In the literature, the difficulties in evaluating the hydrodynamics of flooded mines are well described, but only few tracer tests in flooded mines have been published so far. Most tracer tests linked to mine water problems were related to either pollution of the aquifer or radioactive waste disposal and not the mine water itself. Applying the results of the test provides possibilities f or optimizing the outcome of the source-path-target methodology and therefore diminishes the costs of remediation strategies. Consequently, prior to planning of remediation strategies or numerical simulations, relatively cheap and reliable results for decision making can be obtained via a well conducted tracer test. < copyright > 2005 Elsevier GmbH. All rights reserved.
Address C. Wolkersdorfer, TU Bergakademie Freiberg, Lehrstuhl fur Hydrogeologie, 09596 Freiberg, Sachsen, Germany c.wolke@tu-freiberg.de
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0009-2819 ISBN Medium
Area Expedition Conference
Notes Sep 19; Mine water tracer tests as a basis for remediation strategies; 2767887; Germany 34; Geobase Approved no
Call Number CBU @ c.wolke @ 17499 Serial 34
Permanent link to this record
 

 
Author Wingenfelder, U.; Hansen, C.; Furrer, G.; Schulin, R.
Title Removal of heavy metals from mine waters by natural zeolites Type Journal Article
Year 2005 Publication Environ Sci Technol, ES & T Abbreviated Journal
Volume 39 Issue 12 Pages 4606-4613
Keywords Groundwater problems and environmental effects Pollution and waste management non radioactive remediation heavy metal mine drainage acid mine drainage; acidification; Central Europe; chemical composition; chemical fractionation; dissolved materials; Europe; framework silicates; geochemistry; grain size; heavy metals; hydrochemistry; ion exchange; lead; metals; mines; mining; mobilization; models; pH; pollutants; pollution; precipitation; remediation; samples; silicates; spectra; Switzerland; toxic materials; X-ray diffraction data; X-ray fluorescence spectra; zeolite group
Abstract
Address G. Furrer, Institute of Terrestrial Ecology, Swiss Federal Institute of Technology, Zurich, Grabenstrasse 3, CH-8952 Schlieren, Switzerland gerhard.furrer@env.ethz.ch
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0013-936x ISBN Medium
Area Expedition Conference
Notes Removal of heavy metals from mine waters by natural zeolites; 2006-086777; References: 42; illus. incl. 3 tables United States (USA); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5382 Serial 71
Permanent link to this record
 

 
Author Yeon, K.-M.; Park, J.-S.; Lee, C.-H.; Kim, S.-M.
Title Membrane coupled high-performance compact reactor: A new MBR system for advanced wastewater treatment Type Journal Article
Year 2005 Publication Water Res Abbreviated Journal
Volume 39 Issue 10 Pages 1954-1961
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0043-1354 ISBN Medium
Area Expedition Conference
Notes Membrane coupled high-performance compact reactor: A new MBR system for advanced wastewater treatment; 1674274289; UB Bayreuth <703> TU Berlin <83> UB Braunschweig <84> SUB Bremen <46> UB Cottbus <Co 1> SLUB Dresden <14> SUB Goettingen <7> SUB+Uni Hamburg <18> TUB Hamburg <830> TIB/UB Hannover <89> UB Ilmenau <Ilm 1> UB Karlsruhe <90> ULB + FH Merseburg <3/55> BSB München <12> Österreichische ZB Physik, Wie; OLC-SSG Technik – Online Contents-Sondersammelgebiete Approved no
Call Number CBU @ c.wolke @ 2188 Serial 201
Permanent link to this record
 

 
Author Johnson, D.B.; Hallberg, K.B.
Title Acid mine drainage remediation options: a review Type Journal Article
Year 2005 Publication Science of the Total Environment Abbreviated Journal
Volume 338 Issue 1-2 Pages 3-14
Keywords Wetlands and estuaries Pollution and waste management non radioactive geographical abstracts: physical geography hydrology (71 6 8) geological abstracts: environmental geology (72 14 2) biological method pollutant removal water treatment wastewater bioremediation constructed wetland acid mine drainage Cornwall England England United Kingdom Western Europe Europe Eurasia Eastern Hemisphere World Acid mine drainage Bioreactors Bioremediation Sulfidogenesis Wetlands Wheal Jane
Abstract Acid mine drainage (AMD) causes environmental pollution that affects many countries having historic or current mining industries. Preventing the formation or the migration of AMD from its source is generally considered to be the preferable option, although this is not feasible in many locations, and in such cases, it is necessary to collect, treat, and discharge mine water. There are various options available for remediating AMD, which may be divided into those that use either chemical or biological mechanisms to neutralise AMD and remove metals from solution. Both abiotic and biological systems include those that are classed as “active” (i.e., require continuous inputs of resources to sustain the process) or “passive” (i.e., require relatively little resource input once in operation). This review describes the current abiotic and bioremediative strategies that are currently used to mitigate AMD and compares the strengths and weaknesses of each. New and emerging technologies are also described. In addition, the factors that currently influence the selection of a remediation system, and how these criteria may change in the future, are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0048-9697 ISBN Medium
Area Expedition Conference
Notes Feb. 01; Acid mine drainage remediation options: a review; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10052.pdf; Science Direct Approved no
Call Number CBU @ c.wolke @ 17464 Serial 47
Permanent link to this record