|
Ziemkiewicz, P. F., Skousen, J. G., Skousen, J. G., & Ziemkiewicz, P. F. (1996). Prevention of acid mine drainage by alkaline addition. In Acid mine drainage control and treatment. Morgantown: West Virginia University and the National Mine Land Reclamation Center.
|
|
|
Ziemkiewicz, P. F., Skousen, J. G., Skousen, J. G., & Ziemkiewicz, P. F. (1996). Overview of acid mine drainage at-source control strategies. In Acid mine drainage control and treatment. Morgantown: West Virginia University and the National Mine Land Reclamation Center.
|
|
|
Ziemkiewicz, P. F., Skousen, J. G., & Simmons, J. (2003). Long-term Performance of Passive Acid Mine Drainage Treatment Systems. Mine Water Env., 22(3), 118–129.
Abstract: State and federal reclamation programs, mining operators, and citizen-based watershed organizations have constructed hundreds of passive systems in the eastern U.S. over the past 20 years to provide reliable, low cost, low maintenance mine water treatment in remote locations. While performance has been reported for individual systems, there has not been a comprehensive evaluation of the performance of each treatment type for a wide variety of conditions. We evaluated 83 systems: five types in eight states. Each system was monitored for influent and effluent flow, pH, net acidity, and metal concentrations. Performance was normalized among types by calculating acid load reductions and removals, and by converting construction cost, projected service life, and metric tonnes of acid load treated into cost per tonne of acid treated. Of the 83 systems, 82 reduced acid load. Average acid load reductions were 9.9 t/yr for open limestone channels (OLC), 10.1 t/yr for vertical flow wetlands (VFW), 11.9 t/yr for anaerobic wetlands (AnW), 16.6 t/yr for limestone leach beds (LSB), and 22.2 t/yr for anoxic limestone drains (ALD). Average costs for acid removal varied from $83/t/yr for ALDs to $527 for AnWs. Average acid removals were 25 g/m2/day for AnWs, 62 g/m2/day for VFWs, 22 g/day/t for OLCs, 28 g/day/t for LSBs, and 56 g/day/t for ALDs. It appears that the majority of passive systems are effective but there was wide variation within each system type, so improved reliability and efficiency are needed. This report is an initial step in determining passive treatment system performance; additional work is needed to refine system designs and monitoring.
|
|
|
Ziemkiewicz, P. F., Skousen, J. G., Lovett, R., Skousen, J. G., & Ziemkiewicz, P. F. (1996). Open limestone channels for treating acid mine drainage; a new look at an old idea. In Acid mine drainage control and treatment. Morgantown: West Virginia University and the National Mine Land Reclamation Center.
|
|
|
Ziemkiewicz, P. F., Skousen, J. G., Brant, D. L., Sterner, P. L., Lovett, R. J., Skousen, J. G., et al. (1996). Acid mine drainage treatment with armored limestone in open limestone channels. In Acid mine drainage control and treatment. Morgantown: West Virginia University and the National Mine Land Reclamation Center.
|
|