|
Adam, K. (2003). Solid wastes management in sulphide mines: From waste characterisation to safe closure of disposal sites. Minerals and Energy Raw Materials Report, 18(4), 25–35.
Abstract: Environmentally compatible Waste Management schemes employed by the European extractive industry for the development of new projects, and applied in operating sulphide mines, are presented in this study. Standard methodologies used to assess the geotechnical and geochemical properties of the solid wastes stemming from mining and processing of sulphidic metal ores are firstly given. Based on waste properties, the measures applied to ensure the environmentally safe recycling and disposal of sulphidic wastes are summarised. Emphasis is given on the novel techniques developed to effectively prevent and mitigate the acid drainage phenomenon from sulphidic mine wastes and tailings. Remediation measures taken to minimise the impact from waste disposal sites in the post-closure period are described.
|
|
|
Arnekleiv, J. V., & Storset, L. (1995). Downstream effects of mine drainage on benthos and fish in a Norwegian river; a comparison of the situation before and after river rehabilitation. Heavy metal aspects of mining pollution and its remediation, 52, 35–43.
Abstract: Parts of the Norwegian river Gaula are strongly polluted from former mining activity in the area. In the most polluted parts of the river the concentration levels of Cu and Zn in 1986-1987 were up to 155 mu g l (super -1) and 186 mu g l (super -1) , respectively. In 1989 the spoil heaps in the mining area were covered with protective layers of moss-covered plastic. In 1991-1992 the concentration levels of Cu and Zn had decreased by 75% and 65%, respectively. Animal life in the polluted area seemed to be strongly affected by the trace metals in 1986-1987. The 1991-1992 results showed a marked increase in the number of species and in the number of individuals of each species of Ephemeroptera and Plecoptera, compared with the results from 1986-87. Good correlations were found between the concentrations of Cu in the water and both the number of species and the number of individuals of Ephemeroptera and Plecoptera. Analysis of the species Baetis rhodani, Diura nanseni and Rhyacophila nubila showed an average total dry weight content of Cu up to 264 mu g g (super -1) , of Zn up to 1930 mu g g (super -1) and of Cd up to 16 mu g g (super -1) . The contents of the three trace metals were significantly different from one species to another and in part between the stations for each species. In 1987 trout died after an exposure of one to two days on three test sites in the river, whereas in 1991-1992 40-75% of the trout survived an exposure period of several weeks at two of the sites. Electrofishing in 1991-1992 indicated recolonization of trout in the lower parts of the former affected and uninhabitable area.
|
|
|
Banks, S. B., & Banks, D. (2001). Abandoned mines drainage; impact assessment and mitigation of discharges from coal mines in the UK. In R. N. Yong, & H. R. Thomas (Eds.), Geoenvironmental engineering Engineering Geology (pp. 31–37). 60.
Abstract: The UK has a legacy of pollution caused by discharges from abandoned coal mines, with the potential for further pollution by new discharges as groundwaters continue to rebound to their natural levels. In 1995, the Coal Authority initiated a scoping study of 30 gravity discharges from abandoned coal mines in England and Scotland. Mining information, geological information and water quality data were collated and interpreted in order to allow a preliminary assessment of the source and nature of each of the discharges. An assessment of the potential for remediation was made on the basis of the feasibility and relative costs of alternative remediation measures. Environmental impacts of the discharges and of the proposed remediation schemes were also assessed. The results, together with previous Coal Authority studies of discharges in Wales, were used by the Coal Authority, in collaboration with the former National Rivers Authority and the former Forth and Clyde River Purification Boards, to rank discharge sites in order of priority for remediation.
|
|
|
Bolzicco, J., Carrera, J., & Ayora, C. (2004). Eficiencia de la barrera permeable reactiva de Aznalcollar (Sevilla, Espana) como remedio de aguas acidas de mina. Reactive permeable disposal barrier at Aznalcollar Mine, Seville, Spain; as remediation for acid mine drainage. Revista Latino-Americana de Hidrogeologia, 4, 27–34.
Abstract: As a result of the collapse of a mine tailing dam in april 1998 about 40 km of the Agrio and Guadiamar valleys were covered with a layer of pyrite sludge. Although most of the sludge was removed, a small amount remains in the soil of the Agrio valley and the aquifer remains polluted with acid water (ph<4) and metals (10 mg/L Zn, 5 mg/L Cu and Al). A permeable reactive barrier was build across the aquifer to increase the alcalinity and retain the metals. The barrier is made up of three sections of 30 m longX1.4 m thickX5 m deep (average) containing different proportions of limestone gravel, organic compost and zero-valent iron. The residence time of the water in the barrier is about two days. Within the barrier, the pH values increase to near neutral mainly due to calcite dissolution. Metals co-precipitate as oxyhydroxides, and they are also adsorbed on the organic matter surface. Down-stream the barrier, the total pollution removal is around 60-90% for Zn and Cu, and from 50 to 90% for Al and acidity.
|
|
|
Boonstra, J., van Lier, R., Janssen, G., Dijkman, H., & Buisman, C. J. N. (1999). Biological treatment of acid mine drainage. In R. Amils, & A. Ballester (Eds.), Process Metallurgy, vol.9, Part B (pp. 559–567). Biohydrometallurgy and the environment toward the mining of the 21st century; proceedings of the International biohydrometallurgy symposium IBS'99, Part B, Molecular biology, biosorption, bioremediation.
|
|