|
Anonymous. (1998). Remediation of historical mine sites; technical summaries and bibliography. Littleton: Society for Mining, Metallurgy, and Exploration.
|
|
|
Boonstra, J., van Lier, R., Janssen, G., Dijkman, H., & Buisman, C. J. N. (1999). Biological treatment of acid mine drainage. In R. Amils, & A. Ballester (Eds.), Process Metallurgy, vol.9, Part B (pp. 559–567). Biohydrometallurgy and the environment toward the mining of the 21st century; proceedings of the International biohydrometallurgy symposium IBS'99, Part B, Molecular biology, biosorption, bioremediation.
|
|
|
Nakazawa, H. (2006). Treatment of acid mine drainage containing iron ions and arsenic for utilization of the sludge. Sohn International Symposium Advanced Processing of Metals and Materials, Vol 9, , 373–381.
Abstract: An acid mine drainage in abandoned Horobetsu mine in Hokkaido, Japan, contains arsenic and iron ions; total arsenic ca.10ppm, As(III) ca. 8.5ppm, total iron 379ppm, ferrous iron 266ppm, pH1.8. Arsenic occurs mostly as arsenite (As (III)) or arsenate (As (V)) in natural water. As(III) is more difficult to be remove than As(V), and it is necessary to oxidize As(III) to As(V) for effective removal. 5mL of the mine drainage or its filtrate through the membrane filter (pore size 0.45 mu m) were added to arsenite solutions (pH1.8) with the concentration of 5ppm. After the incubation of 30 days, As(III) was oxidized completely with the addition of the mine drainage while the oxidation did not occur with the addition of filtrate, indicating the microbial oxidation of As(III). In this paper, we have investigated the microbial oxidation of As(III) in acid water below pH2.0.
|
|
|
Wildeman, T. R., Bednar, A. J., Gusek, J. J., & Pinto, A. (2002). A review of the passive treatment of arsenic Hardrock mining 2002; issues shaping the industry..
|
|