|
Cox, M. R., & Peterson, G. L. (1997). The effectiveness of in-situ limestone treatment of acid mine drainage Association of Engineering Geologists program with abstracts, 40th annual meeting; Converging at Cascadia. In Annual Meeting – Association of Engineering Geologists, vol.40 (93).
|
|
|
Hause, D. R., & Willison, L. R. (1986). Deep Mine Abandonment Sealing and Underground Treatment to Prelude Acid Mine Drainage.
Abstract: Beth Energy's Mine 105W is located in Barbour County, West Virginia, near Buckhannon. The mine was opened by drifts updip into the Pittsburgh Seam in 1971 and operated until June, 1982. Most of the water which enters Mine 105W percolates down from previously mined areas in the Redstone Seam, Mine 101, which generally lies 38 feet above the Pittsburgh Seam. The quality of this water is good as it enters Mine 105W. While operating, the Mine 105W water was segregated by pumping. The bulk of the water was collected in sumps near the main area of infiltration from the Redstone Seam and was pumped to Gnatty Creek Portal where, because of the quality, it was minimally treated and discharged. The remainder of the water flowed to the original West Portal where it was occasionally treated with lime.
|
|
|
Houston, K. S., Milionis, P. N., Eppley, R. L., Harrington, J. M., & Harrington, J. G. (2005). Field Demonstration of In-Situ Treatment and Prevention of Acid Mine Drainage in the Abandoned Tide Mine, Indiana County, Pennsylvania.
Abstract: A field demonstration of the Green World Science® patented process technology was performed to address acid mine drainage (AMD) at an abandoned bituminous coal mine, the Tide Mine in Center Township, Indiana County, PA. ARCADIS owns an exclusive patent license of the Green World Science® process, which can be used in situ to transform an aerobic, AMD-producing mine pool to a biologically mediated, sulfate-reducing state. The Green World Science® process treats the entire mine pool to address the source of AMD in place. The project was conducted through a grant agreement between the Blacklick Creek Watershed Association, the Pennsylvania Department of Environmental Protection's Bureau of Abandoned Mine Reclamation, and ARCADIS. In conjunction with the characterization of mine pool hydraulics through injection of a bromide tracer, the in situ treatments implemented at Tide Mine include the initial addition of alkalinity to create an environment suitable for biological activity, injection of organic carbon into the mine pool to facilitate microbially mediated metals reduction and precipitation, and injection of carbon dioxide gas into the atmosphere above the mine pool to control the dominant source of oxygen that perpetuates the AMD process. Collectively, these treatments raised the pH from a baseline of approximately 2.5 to over 6 during the demonstration period. The mine pool subsequently maintains a pH above 5 through microbially produced (i.e., bicarbonate) alkalinity. Ferric iron has been reduced to non-detect concentrations within the anaerobic mine pool, and aluminum concentrations have decreased by approximately 30%, with additional metals removal expected as the system becomes controlled by ferrous sulfide precipitation. The injection of carbon dioxide gas into the mine workings decreased oxygen concentrations above the mine pool from over 20% (ambient air conditions) to less than 5% over approximately three months, thus mitigating the source of AMD within the mine.
|
|
|
Kuyucak, N., & St-Germain, P. (1994). Possible options for in situ treatment of acid mine drainage seepages. In Special Publication – United States. Bureau of Mines, Report: BUMINES-SP-06B-94 (pp. 311–318). Proceedings of the International land reclamation and mine drainage conference and Third international conference on The abatement of acidic drainage; Volume 2 of 4; Mine drainage.
|
|
|
Novák, J. (2001). Groundwater Remediation in the Stráz Leaching Operation. Mine Water Env., 20(4), 158–167.
Abstract: An area of the Czech Republic in the northeastern part of the Ceská Lípa district has been affected by “in situ” chemical mining of uranium. The risks associated with the contaminants have been assessed and a complex groundwater remediation project has been generated. The remediation alternatives for both the Cenomanian and Turonian aquifers are presented, relative to time requirements, economics, ecological considerations and the elimination of unacceptable risks for the population and environment. Finally, the present progress of remediation and a concept of what is necessary to complete remediation are presented.
|
|