|
Kuyucak, N., & St-Germain, P. (1994). Possible options for in situ treatment of acid mine drainage seepages. In Special Publication – United States. Bureau of Mines, Report: BUMINES-SP-06B-94 (pp. 311–318). Proceedings of the International land reclamation and mine drainage conference and Third international conference on The abatement of acidic drainage; Volume 2 of 4; Mine drainage.
|
|
|
Nairn, R. W., & Hedin, R. S. (1992). Designing wetlands for the treatment of polluted coal mine drainage. In M. C. Landin (Ed.), Wetlands; proceedings of the 13th annual conference; Society of Wetland Scientists (pp. 224–229).
|
|
|
Ordónez, A., Loredo, J., & Pendás, F. (1999). (R. Fernández Rubio, Ed.). Mine, Water & Environment. Ii: International Mine Water Association.
|
|
|
Robbins, E. I., Cravotta, C. A., Savela, C. E., & Nord, G. L. (1999). Hydrobiogeochemical Interactions in 'anoxic' Limestone Drains for Neutralization of Acidic Mine Drainage. Fuel, 78(2), 259–270.
Abstract: Processes affecting neutralization of acidic coal mine drainage were evaluated within 'anoxic' limestone drains (ALDs). Influents had pH less than or equal to 3.5 and dissolved oxygen < 2 mg/l. Even though effluents were near neutral (pH > 6 and alkalinity > acidity), two of the four ALDs were failing due to clogging. Mineral-saturation indices indicated the potential for dissolution of calcite and gypsum, and precipitation of Al3+ and Fe3+ compounds. Cleavage mounts of calcite and gypsum that were suspended within the ALDs and later examined microscopically showed dissolution features despite coatings by numerous bacteria, biofilms, and Fe-Al-Si precipitates. In the drain exhibiting the greatest flow reduction, Al-hydroxysulfates had accumulated onlimestone surfaces and calcite etch points, thus causing the decline in transmissivity and dissolution. Therefore, where Al loadings are high and flow rates are low, a pre-treatment step is indicated to promote Al removal before diverting acidic mine water into alkalinity-producing materials. Published by Elsevier Science Ltd.
|
|
|
Schueck, J. H. (1995). Limestone diversion wells; a low-maintenance, cost-effective method for treating acid-mine drainage with limestone. In C. R. Carnein, & J. H. Way (Eds.), Guidebook for the Annual Field Conference of Pennsylvania Geologists, vol.60 Applied geology in the Lock Haven and Williamsport region, Clinton and Lycoming counties, northcentral Pennsylvania (pp. 9–12).
|
|