|
Simmons, J., Ziemkiewicz, P., & Black, D. C. (2002). Use of Steel Slag Leach Beds for the Treatment of Acid Mine Drainage. Mine Water Env., 21(2), 91–99.
Abstract: Steel slag from the Waylite steel-making plant in Bethlehem, Pennsylvania was leached with acidic mine drainage (AMD) of a known quality using an established laboratory procedure. Leaching continued for 60 cycles and leachates were collected after each cycle. Results indicated that the slag was very effective at neutralizing acidity. The AMD/slag leachates contained higher average concentrations of Ba, V, Mn, Cr, As, Ag, and Se and lower average concentrations of Sb, Fe, Zn, Be, Cd, Tl, Ni, Al, Cu, and Pb than the untreated AMD. Based on these tests, slag leach beds were constructed at the abandoned McCarty mine site in Preston County, West Virginia. The leach beds were constructed as slag check dams below limestone-lined settling basins. Acid water was captured in limestone channels and directed into basins to leach through the slag dams and discharge into a tributary of Beaver Creek. Since installation in October 2000, the system has been consistently producing net alkaline, pH 9 water. The treated water is still net alkaline and has a neutral pH after it encounters several other acidic seeps downstream.
|
|
|
Simmons, J. A., Andrew, T., Arnold, A., Bee, N., Bennett, J., Grundman, M., et al. (2006). Small-Scale Chemical Changes Caused by In-stream Limestone Sand Additions to Streams. Mine Water Env., 25(4), 241–245.
Abstract: In-stream limestone sand addition (ILSA) has been employed as the final treatment for acid mine drainage discharges at Swamp Run in central West Virginia for six years. To determine the small-scale longitudinal variation in stream water and sediment chemistry and stream biota, we sampled one to three locations upstream of the ILSA site and six locations downstream. Addition of limestone sand significantly increased calcium and aluminum concentrations in sediment and increased the pH, calcium, and total suspended solids of the stream water. Increases in alkalinity were not significant. The number of benthic macroinvertebrate taxa was significantly reduced but there was no effect on periphyton biomass. Dissolved aluminum concentration in stream water was reduced, apparently by precipitation into the stream sediment.
|
|
|
Skousen, J. (1997). Overview of passive systems for treating acid mine drainage. Green Lands, 27(4), 34–43.
|
|
|
Swoboda-Colberg, N., Colberg, P., & Smith, J. L. (1994). Constructed vertical flow aerated wetlands.
Abstract: In the report, wetland technology is described in which the main reactive layer is limestone gravel (rather than organic material) which is overlain by a fine gravel filter and soil. The three-year project included laboratory and field studies. Vertical aerated wetlands, simulated by columns, constructed in the field and in the laboratory, were operated during the project. The report presents a summary of results given in previous reports and summaries of results obtained using water from Butte, MT, and field studies at the Rockford Tunnel, near Idaho Springs, CO.
|
|
|
Taylor, J., & Waters, J. (2003). Treating ARD; how, when, where and why. Mining Environmental Management, 11(3), 6–9.
|
|