|
Barton, C. D., & Karathanasis, A. D. (1998). Aerobic and anaerobic metal attenuation processes in a constructed wetland treating acid mine drainage. Environ Geosci, 5(2), 43–56.
|
|
|
Baskin, L. (1979). Linear relationship between mine flow-acid load and influence of depositional environment. In Underground coal mining symposium. New York City: McGraw-Hill.
|
|
|
Berg, G. J., & Arthur, B. (1999). Proposed mine water treatment in Wisconsin. In D. Goldsack, N. Belzile, P. Yearwood, & G. J. Hall (Eds.), Sudbury '99; mining and the environment II; Conference proceedings. Sudbury: Sudbury Environmental.
Abstract: Water quality standards are driving wastewater effluent limits to ultra-low levels in the nanogram/L range. Standards are proposed that require discharges to match background water quality. The new ultra-low level standards require cautious sampling techniques, super clean laboratory methods and more advanced treatment technologies. This paper follows a case history through water quality standards for ultra-low metals, laboratory selection, and the design of a wastewater treatment system that can meet the water quality standards which are required to permit a proposed copper and zinc mine in Northern Wisconsin. A high degree of care must be taken when sampling for ultra-low level metals. Both surface water and treated effluent samples present new challenges. Sampling methods used must assure that there are no unwanted contaminants being introduced to the samples. The selection of a laboratory is as critical as the construction of a state of the art wastewater treatment system. Treatment methods such as lime and sulfide precipitation have had a high degree of success, but they do have limitations. Given today's ultra-low standards, it is necessary to assess the ability of reverse osmosis, deionization, and evaporation to provide the high level of treatment required.
|
|
|
Bloom, N. S., Preus, E., Kilner, P. I., von der Geest, E., & Hensman, C. E. (2002). Very efficient removal of toxic metals from acid mine drainage water (Berkeley Pit, Montana) with a recycled alkaline industrial waste product Hardrock mining 2002; issues shaping the industry..
|
|
|
Blowes, D. W., Bain, J. G., Smyth, D. J., Ptacek, C. J., Jambor, J. L., Blowes, D. W., et al. (2003). Treatment of mine drainage using permeable reactive materials. Environmental Aspects of Mine Wastes, 31, 361–376.
|
|