|
Burgess, J. E., & Stuetz, R. M. (2002). Activated Sludge for the Treatment of Sulphur-rich Wastewaters. Miner. Eng., 15(11), 839–846.
Abstract: The aim of this investigation was to assess the potential of activated sludge for the remediation of sulphur-rich wastewaters. A pilot-scale activated sludge plant was acclimatised to a low load of sulphide and operated as a flow-through unit. Additional sludge samples from different full-scale plants were compared with the acclimatised and unacclimatised sludges using batch absorption tests. The effects of sludge source and acclimatisation on the ability of the sludge to biodegrade high loads of sulphide were evaluated. Acclimatisation to low-sulphide concentrations enabled the sludge to degrade subsequent high loads which were toxic to unacclimatised sludge. Acclimatisation was seen to be an effect of selection pressure on the biomass, suggesting that the treatment capability of activated sludge will develop after acclimation, indicating potential for treatment of acid mine drainage (AMD) by a standard wastewater treatment process. Existing options for biological treatment of AMD are described and the potential of activated sludge treatment for AMD discussed in comparison with existing technologies. (C) 2002 Elsevier Science Ltd.
|
|
|
Burnett, M., Skousen, J. G., Skousen, J. G., & Ziemkiewicz, P. F. (1996). Injection of limestone into underground mines for AMD control. In Acid mine drainage control and treatment. Morgantown: West Virginia University and the National Mine Land Reclamation Center.
|
|
|
Calabrese, J. P., Sexstone, A. J., Bhumbla, D. K., Skousen, J. G., Bissonnette, G. K., & Sencindiver, J. C. (1994). Long-term study of constructed model wetlands for treatment of acid mine drainage. In Special Publication – United States. Bureau of Mines, Report: BUMINES-SP-06B-94 (406). Proceedings of the International land reclamation and mine drainage conference and Third international conference on The abatement of acidic drainage; Volume 2 of 4; Mine drainage.
|
|
|
Cravotta, C. A., III, Watzlaf, G. R., Naftz, D. L., Morrison, S. J., Fuller, C. C., & Davis, J. A. (2002). Design and performance of limestone drains to increase pH and remove metals from acidic mine drainage Handbook of groundwater remediation using permeable reactive barriers; applications to radionuclides, trace metals, and nutrients.. Amsterdam: Academic Press.
|
|
|
Curi, A. C., Granda, W. J. V., Lima, H. M., & Sousa, W. T. (2006). Zeolites and their application in the decontamination of mine waste water. Informacion Tecnologica, 17(6), 111–118.
Abstract: This paper describes the genesis, structure and classification of natural zeolites, including their most relevant properties such as porosity, adsorption and ionic exchange. The use of natural zeolites in the treatment of effluents containing heavy metals is reviewed based on current literature. These uses are focused on mineral-metallurgical effluents and mercury pollution related to artisan mining activities. The study shows that natural zeolites are efficient in removal of heavy metals in metal mining effluents, can be produced and improved at a low cost, and can also be used to adsorb mercury vapors from ovens used to fire amalgams.
|
|