|
Entrena, A. L., Serrano, J. R., & Villoria, A. (1988). Descontaminacion de aguas de mina con recuperacion de los metales contenidos en ellas. Decontamination of mine waters by recovering the metals contained within them VIII congreso internacional de Mineria y metalurgia; tomo 8. VIII international conference on Mining and metallurgy; Volume 8. In Congreso Internacional de Mineria y Metalurgia, vol.8 (pp. 156–173).
|
|
|
Faulkner, B. B., Skousen, J. G., Skousen, J. G., & Ziemkiewicz, P. F. (1996). Treatment of acid mine drainage by passive treatment systems. In Acid mine drainage control and treatment. Morgantown: West Virginia University and the National Mine Land Reclamation Center.
|
|
|
Fricke, J., Blickwedel, R., & Hagerty, P. (1997). Biotreatment of metal mine waste waters; case histories. Open-File Report – US Geological Survey, Of 97-0496, 25.
|
|
|
Fyson, A., Nixdorf, B., & Steinberg, C. E. W. (1998). Manipulation of the sediment-water interface of extremely acidic mining lakes with potatoes; laboratory studies with intact sediment cores Geochemical and microbial processes in sediments and at the sediment-water interface of acidic mining lakes. In S. Peiffer (Ed.), Water, Air and Soil Pollution (pp. 353–363). 108.
|
|
|
Gong, Z., Huang, J., & Jiang, H. (1996). Study of comprehensive retrieval utilization and the treatment of acid mine wastewater. Zhongnan Gongye Daxue Xuebao = Journal of Central South University of Technology, 27(4), 432–435.
Abstract: Impact of precipitating on removing harmful metal ion in the acid mine wastewater with pH neutralizer and sulfide was studied. The possible way of retrieving heavy metal ion in wastewater was probed. The techniques for lime carbonate to reject iron for hydrogen sulfide to precipitate copper and for zinc-lime cream neutralization flocculation to treat, mine acid wastewater were chosen. The final water quality may reach national effluent standard; the copper content was 32% in the sulfide slag.
|
|