|
Hubbard, K. L., Darling, G. D., Rao, S. R., & Finch, J. A. (1994). New functional polymers as sorbents for the selective recovery of toxic heavy metals from acid mine drainage. In Special Publication – United States. Bureau of Mines, Report: BUMINES-SP-06B-94 (pp. 273–280). Proceedings of the International land reclamation and mine drainage conference and Third international conference on The abatement of acidic drainage; Volume 2 of 4; Mine drainage.
|
|
|
Johnson, D. B., & Hallberg, K. B. (2002). Pitfalls of passive mine water treatment. Reviews in Environmental Science & Biotechnology, 1(5), 335–343.
Abstract: Passive (wetland) treatment of waters draining abandoned and derelict mine sites has a number of detrac-tions. Detailed knowledge of many of the fundamental processes that dictate the performance and longevity of constructed systems is currently very limited and therefore more research effort is needed before passive treatment becomes an “off-the-shelf” technology.
|
|
|
Karathanasis, A. D., & Barton, C. D. (1999). The revival of a failed constructed wetland treating a high Fe load AMD. In K. S. Sajwan, A. K. Alva, & R. F. Keefer (Eds.), Proceedings; biogeochemistry of trace elements in coal and coal combustion byproducts. New York: Kluwer Academic/Plenum Publishers.
|
|
|
Kingham, N. W., Semenak, R., Powell, G., & Way, S. (2002). Reverse osmosis coupled with chemical precipitation treatment of acid mine leachate at the Basin-Luttrell Pit, Ten Mile Creek Site, Lewis and Clark County, Montana Hardrock mining 2002; issues shaping the industry..
|
|
|
Kuyucak, N. (2001). Acid mine drainage; treatment options for mining effluents. Mining Environmental Management, 9(2), 12–15.
|
|