|
Anonymous. (1998). Remediation of historical mine sites; technical summaries and bibliography. Littleton: Society for Mining, Metallurgy, and Exploration.
|
|
|
Becker, G., Wade, S., Riggins, J. D., Cullen, T. B., Venn, C., & Hallen, C. P. (2005). Effect of Bast Mine treatment discharge on Big Mine Run AMD and Mahanoy Creek in the Western Middle Anthracite Field of Pennsylvania.
Abstract: The Bast Mine (reopened in 2001) and Big Mine are two anthracite coal mines near Ashland, PA, that were abandoned in the 1930's and that are now causing drastic and opposite effects on the water quality of the streams originating from them. To quantify these effects, multiple samples were taken at 5 different sites: 3 along Big Mine Run and 2 from Mahanoy Creek (1 upstream and 1 downstream of the confluence with Big Mine Run). At each site, one set of the samples was treated with nitric acid for metals survey, one set was acidified with sulfuric acid for nitrate preservation, one set was filtered for sulfate and phosphate tests, and one set was unaltered. Measurements of pH, TDS, dissolved oxygen, and temperature were made in the field. Alkalinity, acidity, hardness, nitrates, orthophosphates and sulfates were analyzed using Hach procedures. Selected metals (Fe, Ni, Mg, Ca, Cu, Zn, Hg, Pb) were analyzed utilizing flame atomic absorption spectroscopy. Drainage from the Bast Mine is actively treated with hydrated lime before the water is piped down to Big Mine Run. pH and alkalinity values were much higher at the outflow compared to those in the water with which it merged. The two waters could be visibly distinguished some distance downstream. pH values decreased, sulfate and dissolved iron increased and alkalinity was reduced to zero until the confluence with Mahanoy Creek. The high alkalinity, turbidity, TDS and calcium values in Mahanoy Creek were somewhat reduced downstream of the confluence with the much lower discharge Big Mine Run.
|
|
|
Bell, A. V., & Nancarrow, D. R. (1974). Salmon and mining in northeastern New Brunswick (a summary of the northeastern New Brunswick mine water quality program). CIM Bull., 67(751), 44–53.
Abstract: It was aimed toward developing solutions to major water quality problems in the base metal mining regions of northeastern New Brunswick and specifically toward insuring that the extremely valuable fishery resources and aquatic environments of the region could be maintained in the face of existing and future base metal mining developments. The program analyzed in detail the fishery resources of the region, their water quality requirements, the mineral resources of the region and the many aspects of mining waste management at each phase of mine development. This paper describes the reasons for the initial concern and the approach adopted toward finding a solution. It briefly summarizes the important findings and recommendations made to support the conclusion that the fishery resource can be maintained and co-exist with current and future base metal mining developments in the region
|
|
|
Benner, S. G., Blowes, D. W., & Ptacek, C. J. (1997). A full-scale porous reactive wall for prevention of acid mine drainage. Ground Water Monitoring and Remediation, 17(4), 99–107.
Abstract: The generation and release of acidic drainage containing high concentrations of dissolved metals from decommissioned mine wastes is an environmental problem of international scale. A potential solution to many acid drainage problem is the installation of permeable reactive walls into aquifers affected by drainage water derived from mine waste materials. A permeable reactive wall installed into an aquifer impacted by low-quality mine drainage waters was installed in August 1995 at the Nickel Rim mine site near Sudbury, Ontario. The reactive mixture, containing organic matter, was designed to promote bacterially mediated sulfate reduction and subsequent metal sulfide precipitation. The reactive wall is installed to an average depth of 12 feet (3.6 m) and is 49 feet (15 m) long perpendicular to ground water flow. The wall thickness (flow path length) is 13 feet (4 m). Initial results, collected nine months after installation, indicate that sulfate reduction and metal sulfide precipitation is occurring. Comparing water entering the wall to treated water existing the wall, sulfate concentrations decrease from 2400 to 4600 mg/L to 200 to 3600 mg/L; Fe concentration decrease from 250 to 1300 mg/L to 1.0 to 40 mg/L, pH increases from 5.8 to 7.0; and alkalinity (as CaCO<inf>3</inf>) increases from 0 to 50 mg/L to 600 to 2000 mg/L. The reactive wall has effectively removed the capacity of the ground water to generate acidity on discharge to the surface. Calculations based on comparison to previously run laboratory column experiments indicate that the reactive wall has potential to remain effective for at least 15 years.
|
|
|
Berg, G. J., & Arthur, B. (1999). Proposed mine water treatment in Wisconsin. In D. Goldsack, N. Belzile, P. Yearwood, & G. J. Hall (Eds.), Sudbury '99; mining and the environment II; Conference proceedings. Sudbury: Sudbury Environmental.
Abstract: Water quality standards are driving wastewater effluent limits to ultra-low levels in the nanogram/L range. Standards are proposed that require discharges to match background water quality. The new ultra-low level standards require cautious sampling techniques, super clean laboratory methods and more advanced treatment technologies. This paper follows a case history through water quality standards for ultra-low metals, laboratory selection, and the design of a wastewater treatment system that can meet the water quality standards which are required to permit a proposed copper and zinc mine in Northern Wisconsin. A high degree of care must be taken when sampling for ultra-low level metals. Both surface water and treated effluent samples present new challenges. Sampling methods used must assure that there are no unwanted contaminants being introduced to the samples. The selection of a laboratory is as critical as the construction of a state of the art wastewater treatment system. Treatment methods such as lime and sulfide precipitation have had a high degree of success, but they do have limitations. Given today's ultra-low standards, it is necessary to assess the ability of reverse osmosis, deionization, and evaporation to provide the high level of treatment required.
|
|