|
Magdziorz, A., & Sewerynski, J. (2000). The use of membrane technique in mineralised water treatment for drinking and domestic purposes at “Pokoj” coal mine district under liquidation. In A. Rozkowski (Ed.), 7th international Mine Water Association congress; Mine water and the environment (pp. 430–442). Sosnowiec: Uniwersytet Slaski.
|
|
|
Kingham, N. W., Semenak, R., Powell, G., & Way, S. (2002). Reverse osmosis coupled with chemical precipitation treatment of acid mine leachate at the Basin-Luttrell Pit, Ten Mile Creek Site, Lewis and Clark County, Montana Hardrock mining 2002; issues shaping the industry..
|
|
|
Jage, C. R., & Zipper, C. E. (2000). Acid-mine drainage treatment using successive alkalinity-producing systems. Powell River Project research and education program reports.
|
|
|
Isaacson, A. E., & Jeffers, T. H. (1995). Acid mine drainage remediation through applied water treatment systems Pollution prevention for process engineering. In P. E. Richardson, B. J. Scheiner, & Jr. F. Lanzetta (Eds.),. New York: Engineering Foundation.
|
|
|
Aube, B. C., & Zinck, J. M. (1999). Comparison of AMD treatment processes and their impact on sludge characteristics.
Abstract: Lime neutralisation for the treatment of acid mine drainage is one of the oldest water pollution control techniques practised by the mineral industry. Several advances have been made in the process in the last thirty years, particularly with respect to discharge concentrations and sludge density. However, the impact of different treatment processes on metal leachability and sludge handling properties has not been investigated. A study of treatment sludges sampled from various water treatment plants has shown that substantial differences can be related to the treatment process and raw water composition. This study suggests that sludge densities, excess alkalinity, long-term compaction properties, metal leachability, crystallinity and cost efficiency can be affected by the neutralisation process and specific process parameters. The study also showed that the sludge density and dewatering ability is not positively correlated with particle size as previously suggested in numerous studies. The treatment process comparisons include sludge samples from basic lime treatment, the conventional High Density Sludge (HDS) Process, and the Geco HDS Process.
|
|