|
Dillard, G. (2000). A win-win way to clean up by changing ionic state, new process can precipitate heavy metals. Pay Dirt, 734, 10–11.
|
|
|
Driussi, C. (2006). Technological options for waste minimisation in the mining industry. J. Cleaner Prod., 14(8), 682–688.
Abstract: Just as the application of technology in mining processes can cause pollution, it can also be harnessed to minimise, and sometimes eliminate, mine-related contaminants. Waste minimisation can be achieved through decreased waste production, waste collection, waste recycling, and the neutralisation of pollutants into detoxified forms. This article reviews examples of how technology can be used to minimise air, water, land and noise pollution in the mining industry. (c) 2005 Elsevier Ltd. All rights reserved.
|
|
|
Dugan, P. R. (1987). Prevention of formation of acid drainage from high-sulfur coal refuse by inhibition of iron- and sulfur-oxidizing microorganisms. II. Inhibition in run of mine refuse under simulated field conditions. Biotechnol. Bioeng., 29(1), 6.
|
|
|
Edraki, M. (2006). Post closure management of the Mt Leyshon Gold Mine – Water the integrator. Water in Mining 2006, Proceedings, , 233–242.
Abstract: Mining at the Mt Leyshon Gold Mine in semi-arid north Queensland stopped in 2002. Newmont Australia has recently initiated a thorough post-closure water management study of the site by revisiting the existing information and conducting new water-related investigations. The focus of this paper. which is the first publication on post-closure environmental management of the site. is an overview of the site water quality in view of the sources and spatial distribution of polluted mine water, and also the performance of cover systems in controlling water flux though mine wastes.
|
|
|
Eger, P. (1995). Sulfate reduction for the treatment of acid mine drainage; Long term solution or short term fix? Sudbury '95 – Mining and the Environment, Conference Proceedings, Vols 1-3, , 515–524.
|
|