|
Fernández Rubio, R., Fábregas, A. L., Baquero Ubeda, J. C., & Lorca Fernández, D. (1998). (L. Nel Petrus Johannes, Ed.). Mine Water and Environmental Impacts. 1: Proceedings International Mine Water Association Symposium.
|
|
|
Fischer, R., Reissig, H., Gockel, G., Seidel, K. H., & Guderitz, T. (1998). Direkte Neutralisation und Untergrundwasserbehandlung des Restwassers im Tagebaurestsee Heide VI. Direct neutralization and treatment of deep subsoil water of the residual water in the open-pit relic lake Heide VI. Braunkohle, Surface Mining, 50(3), 273–278.
|
|
|
Fyson, A., Nixdorf, B., & Steinberg, C. E. W. (1998). Manipulation of the sediment-water interface of extremely acidic mining lakes with potatoes; laboratory studies with intact sediment cores Geochemical and microbial processes in sediments and at the sediment-water interface of acidic mining lakes. In S. Peiffer (Ed.), Water, Air and Soil Pollution (pp. 353–363). 108.
|
|
|
Henderson, A. (1998). The implementation of paste fill at the Henty Gold Mine. Minefill'98, 98(1), 299–304.
Abstract: The Henty Gold Mine, located ill Western Tasmania uses innovative solutions to effectively manage a mining operation in an environmentally sensitive setting and has been presented with several environmental awards. Fill is required as part of the mining method to provide passive ground support, minimise rock exposure and ensure maximum recovery of the small but high-grade orebody. The use of the whole portion of leach residue in the backfill reduces the surface tailing disposal requirements. Therefore, High Density Paste Fill (HDPF) has been selected as the most appropriate fill method to meet these objectives. Additional benefits include the minimisation of excess water from fill and the subsequent need for the collection and treatment of water and slimes. There are minimal equipment requirements during placement, thereby optimising mine resources for production.
|
|
|
Herbert, R. B., Jr., Benner, S. G., & Blowes, D. W. (1998). Reactive barrier treatment of groundwater contaminated by acid mine drainage; sulphur accumulation and sulphide formation. In M. Herbert, & K. Kovar (Eds.), Groundwater Quality: Remediation and Protection (pp. 451–457). IAHS-AISH Publication, vol.250.
Abstract: A permeable reactive barrier was installed in August 1995 at the Nickel Rim Mine near Sudbury, Ontario, Canada, for the passive remediation of groundwater contaminated with acid mine drainage. The reactive component of the barrier consists of a mixture of municipal and leaf compost and wood chips: the organic material promotes bacterially-mediated sulphate reduction. Hydrogen sulphide, a product of sulphate reduction, may then complex with aqueous ferrous iron and precipitate as iron sulphide. This study presents the solid phase sulphur chemistry of the reactive wall after two years of operation, and discusses the formation and accumulation of iron sulphide minerals in the reactive material. The results from the solid-phase chemical analysis of core samples indicate that there is an accumulation of reduced inorganic sulphur in the reactive wall, with levels reaching 190 mu mol g (super -1) (dry weight) by July 1997.
|
|